The novel crystallization properties of nano-materials represent a great challenge to researchers across all disciplines of materials science. Simple binary solids can be found to adopt unprecedented structures, when confined into nanometer-sized cavities, such as the inner cylindrical bore of single-walled carbon nanotubes (SWNT). Lanthanum iodide was encapsulated within SWNTs and the resulting encapsulation composite was analyzed using energy-dispersive X-ray microanalysis (EDX) and high-resolution transmission electron microscopy (HRTEM) imaging techniques, to reveal a one-dimensional crystal fragment, with the stoichiometry of LaI2, crystallizing in the structure of LaI3 With one third of the iodine positions unoccupied. A complete characterization of the encapsulation composite was achieved using an enhanced image restoration technique, which restores the object wave from a focal series of HRTEM images, providing information about the precise structural data of both filling material and host SWNT, and thereby enabling the identification of the SWNT chirality.
SCATTERING
,ABERRATIONS
,quantum wires
,single-walled carbon nanotubes
,lanthanum iodide
,focal series HRTEM image restoration
,encapsulation composites
,SWNT chirality
,CEI2