Ultra low resistance joints for high temperature superconducting magnets

The next generation of ultra high field magnets are starting to require the use of high temperature superconducting materials. These magnets will require several kinds of very low resistance (persistent) joints between superconducting wires that can operate reliably in high magnetic fields. So far few potential solutions to overcoming the serious materials challenges in manufacturing these joints have been reported.  The student, working closely with our industrial partners Oxford Instruments, will use new facilities in the Centre for Applied Superconductivity (cfas.ox.ac.uk) to design novel processes to form joints between commercial wires, and measure their performance.  The initial focus of the work will be on the state-of-the-art multifilamentary wires from Oxford Superconducting Technology. There will be opportunities for the student to spend time in the laboratories of Oxford Instruments, and to become an expert in the correlation of microstructure with superconducting properties of materials critical for future magnet designs.

Microstructure of multifilamentary high temperature superconducting wire joint

Microstructure of multifilamentary high temperature superconducting wire joint

The description above outlines a possible new research project being offered to prospective new postgraduate students.

For full details of all postgraduate research projects available for new students and how to apply, please see postgraduate projects available.

Note that post-doctoral research positions are advertised under "Work with Us"

Project supervisors can submit details of new projects or provide updates for existing projects.


Quickly identify other projects available using the filters below.