Prof Angus J Wilkinson, Dr Ed Tarleton, and Dr David E J Armstrong
In service temperature cycling of nuclear fuel cladding can lead to repeated sequences of precipitation and dissolution of hydrides in zirconium based alloys. During the transformation from hydrogen in solid solution to the hydride phase there is a considerable volume expansion. This project will explore the links between nucleation sites, hysteresis between temperatures for precipitation and dissolution, the stress field and local plasticity induced by the transformation strain and the precipitation morphology. The following techniques will be used: high resolution EBSD, digital image correlation of SEM images, in situ thermal cycling, finite element based-crystal plasticity simulations. This project will be carried out in close conjunction with Rolls Royce and other partner Universities within the HexMat flagship EPSRC programme (http://www3.imperial.ac.uk/hexmat).