Probing the atomic scale structure and dynamics of energy materials

The aim of this project is to develop and apply computational techniques to interpret solid-state NMR spectra of materials used in solid-oxide fuel cells and battery materials. Determining the local atomic structure and material function of such materials has proved challenging using convention (diffraction based) techniques, due to the presence of long-range disorder and ionic motion.

Solid-state NMR is a powerful probe of atomic scale structure and dynamics. However, there is no simple theory to link the observed NMR spectrum to the underlying atomic level structure (as Bragg's Law does for diffraction). In recent years we have developed computational techniques, based on quantum mechanics, to predict and interpret NMR spectra (see www.gipaw.net).

There are several possible routes for this project, depending on the student's interest - either focusing on applying existing techniques to novel problems, or developing new computational methodologies. There will be close collaboration with experimental NMR groups, both international and within the UK.

The description above outlines a possible new research project being offered to prospective new postgraduate students.

For full details of all postgraduate research projects available for new students and how to apply, please see postgraduate projects available.

Note that post-doctoral research positions are advertised under "Work with Us"

 

Quickly identify other projects available using the filters below.

List of site pages