Maximising the resolving power of the scanning tunneling microscope

STM Resolution

Research by the Surface Nanoscience group and collaborators at Trinity College Dublin as reported in open access Advanced Structural and Chemical Imaging demonstrates that a significant improvement in the resolving power of the STM is achieved through automated distortion correction and multi-frame averaging. We demonstrate the approximately square-root relationship improvement in signal-to-noise ratio upon image averaging, a sub-picometre precision height measurement, and the automated identification of chiral unit cells on a surface. These automated tools, which do not require prior knowledge of the surface structure, promise to facilitate more rapid and higher-precision studies of surfaces, making full use of the experimentalists recorded data sets. This advance allows a new study of surface pico-science to be developed where subtle variations in surface structure can now be seen, that hitherto were not detected because they were buried in noise.