Understanding and Engineering Hydrogen Passivation for High Efficiency Silicon Solar Cells

h project
shp project

Interface and Electronic Materials Laboratory

Semiconductor and Silicon PV group


The planet is at a crucial point where accelerated deployments of silicon photovoltaic cells are required in order to avoid the worst effects of anthropogenic climate change. Only Silicon PV technology can guarantee continuing reductions in the cost of renewable energy to boost its deployment to the terawatt level. While such silicon cells are the current industrial standard for the fabrication of solar panels, there remains a large gap of improvements to be made to the silicon cell structures in order to deploy >26% efficient panels. Defects, contaminants, and imperfections in these cells currently limit their performance. This is mostly through recombination of excited charge carriers at defect sites. A recently discovered yet extremely promising approach for mitigating losses in crystalline silicon solar cells is hydrogen passivation. In this project the student will work in close collaboration with the world-leading hydrogen passivation group at the University of New South Wales to understand and engineer hydrogen passivation techniques for silicon solar cell designs. This would allow observation of how hydrogen acts to passivate impurities and defects, and its interaction with other components of the cells. The student would work as part of a dedicated group of researchers on state-of-the-art techniques for improving the performance of crystalline silicon solar cells. The project will involve different processing and materials characterisation techniques.

The description above outlines a possible new research project being offered to prospective new postgraduate students.

For full details of all postgraduate research projects available for new students and how to apply, please see postgraduate projects available.

Note that post-doctoral research positions are advertised under "Work with Us"

Project supervisors can submit details of new projects or provide updates for existing projects.


Quickly identify other projects available using the filters below.