Personal Homepages

Michael Moody

Professor Michael Moody
Professor of Materials
Fellow of Trinity College

Department of Materials
University of Oxford
16 Parks Road
Oxford OX1 3PH

Tel: +44 1865 273693
Tel: +44 1865 273693 (Room 179.30.20)
Tel: +44 1865 273777 (reception)
Fax: +44 1865 273789 (general fax)

Atom Probe Group website

Summary of Interests

My interests are focused upon enabling materials research at the nanoscale via the microscopy techniques of atom probe tomography (APT) and field ion microscopy (FIM). APT is a technique capable of material characterisations at the atomic-scale, in which each atom is identified chemically and located in three-dimensions with very high accuracy. Hence, it is a technique rapidly rising in prominence. The Atom Probe Group in the Department of Materials at the University of Oxford is interested and active in all areas of this research across a broad range of material systems.

In particular, I am developing a variety of new analytical techniques to improve the three dimensional reconstructions generated by APT and the subsequent atom-by-atom analysis of the resulting data.  I am interested in applying these techniques to the characterisation of a wide variety of systems to inform materials research projects.

Research Publications

K.Y. Xie, A.J. Breen, L. Yao, M.P. Moody, B. Gault, J.M. Cairney, S.P. Ringer, Overcoming challenges in the study of nitrided microalloyed steels using atom probe, Ultramicroscopy, 112 (2012) 32-38.

F. Tang, D.S. Gianola, M.P. Moody, K.J. Hemker, J.M. Cairney, Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour, Acta Materialia, 60 (2012) 1038-1047.

T. Homma, M. Moody, D. Saxey, S. Ringer, Effect of Sn Addition in Preprecipitation Stage in Al-Cu Alloys: A Correlative Transmission Electron Microscopy and Atom Probe Tomography Study, Metallurgical and Materials Transactions A, (2012) 1-11.

B. Gault, X.Y. Cui, M.P. Moody, F.d. Geuser, C. Sigli, S.P. Ringer, A. Deschamps, Atom probe microscopy investigation of Mg site occupancy within δ precipitates in an Al–Mg–Li alloy, Scripta Materialia, (2012).

V. Araullo-Peters, B. Gault, S.L. Shrestha, L. Yao, M.P. Moody, S.P. Ringer, J.M. Cairney, Atom probe crystallography: Atomic-scale 3-D orientation mapping, Scripta Materialia, (2012).

W.K. Yeoh, B. Gault, X.Y. Cui, C. Zhu, M.P. Moody, L. Li, R.K. Zheng, W.X. Li, X.L. Wang, S.X. Dou, G.L. Sun, C.T. Lin, S.P. Ringer, Direct Observation of Local Potassium Variation and Its Correlation to Electronic Inhomogeneity in (Ba1-xKx)Fe2As2 Pnictide, Physical Review Letters, 106 (2011) 247002.

L. Yao, M.P. Moody, J.M. Cairney, D. Haley, A.V. Ceguerra, C. Zhu, S.P. Ringer, Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation, Ultramicroscopy, 111 (2011) 458-463.

K.L. Torres, B. Geiser, M.P. Moody, S.P. Ringer, G.B. Thompson, Field evaporation behavior in [0 0 1] FePt thin films, Ultramicroscopy, 111 (2011) 512-517.

L.T. Stephenson, M.P. Moody, S.P. Ringer, Theory of solute clustering in materials for atom probe, Philosophical Magazine, 91 (2011) 2200 - 2215.

L.T. Stephenson, M.P. Moody, B. Gault, S.P. Ringer, Estimating the physical cluster-size distribution within materials using atom-probe, Microscopy Research and Technique, 74 (2011) 799-803.

M.P. Moody, F. Tang, B. Gault, S.P. Ringer, J.M. Cairney, Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium, Ultramicroscopy, 111 (2011) 493-499.

M.P. Moody, B. Gault, L.T. Stephenson, R.K.W. Marceau, R.C. Powles, A.V. Ceguerra, A.J. Breen, S.P. Ringer, Lattice Rectification in Atom Probe Tomography: Toward True Three-Dimensional Atomic Microscopy, Microscopy and Microanalysis, 17 (2011) 226-239.

B. Gault, S.T. Loi, V.J. Araullo-Peters, L.T. Stephenson, M.P. Moody, S.L. Shrestha, R.K.W. Marceau, L. Yao, J.M. Cairney, S.P. Ringer, Dynamic reconstruction for atom probe tomography, Ultramicroscopy, 111 (2011) 1619-1624.

B. Gault, D. Haley, F. de Geuser, M.P. Moody, E.A. Marquis, D.J. Larson, B.P. Geiser, Advances in the reconstruction of atom probe tomography data, Ultramicroscopy, 111 (2011) 448-457.

B. Gault, Y.M. Chen, M.P. Moody, T. Ohkubo, K. Hono, S.P. Ringer, Influence of the wavelength on the spatial resolution of pulsed-laser atom probe, J. Appl. Phys., 110 (2011) 094901-094905.

F. Tang, T. Alam, M.P. Moody, B. Gault, J.M. Cairney, Challenges Associated with the Characterisation of Nanocrystalline Materials using Atom Probe Tomography, in: J.F. Nie, A. Morton (Eds.) Pricm 7, Pts 1-3, Trans Tech Publications Ltd, Stafa-Zurich, 2010, pp. 2366-2369.

B. Gault, M. Muller, A.L. Fontaine, M.P. Moody, A. Shariq, A. Cerezo, S.P. Ringer, G.D.W. Smith, Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography, J. Appl. Phys., 108 (2010) 044904.

B. Gault, M.P. Moody, F. De Geuser, A. La Fontaine, L.T. Stephenson, D. Haley, S.P. Ringer, Spatial Resolution in Atom Probe Tomography, Microscopy and Microanalysis, 16 (2010) 99-110.

B. Gault, A. La Fontaine, M.P. Moody, S.P. Ringer, E.A. Marquis, Impact of laser pulsing on the reconstruction in an atom probe tomography, Ultramicroscopy, 110 (2010) 1215-1222.

A.V. Ceguerra, R.C. Powles, M.P. Moody, S.P. Ringer, Quantitative description of atomic architecture in solid solutions: A generalized theory for multicomponent short-range order, Physical Review B, 82 (2010) 132201.

A.V. Ceguerra, M.P. Moody, L.T. Stephenson, R.K.W. Marceau, S.P. Ringer, A three-dimensional Markov field approach for the analysis of atomic clustering in atom probe data, Philosophical Magazine, 90 (2010) 1657 - 1683.

R.K. Zheng, M.P. Moody, B. Gault, Z.W. Liu, H. Liu, S.P. Ringer, On the understanding of the microscopic origin of the properties of diluted magnetic semiconductors by atom probe tomography, Journal of Magnetism and Magnetic Materials, 321 (2009) 935-943.

M.P. Moody, B. Gault, L.T. Stephenson, D. Haley, S.P. Ringer, Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques, Ultramicroscopy, 109 (2009) 815-824.

B. Gault, M.P. Moody, F. de Geuser, G. Tsafnat, A. La Fontaine, L.T. Stephenson, D. Haley, S.P. Ringer, Advances in the calibration of atom probe tomographic reconstruction - art. no. 034913, J. Appl. Phys., 105 (2009) 34913-34913.

B. Gault, M.P. Moody, F. de Geuser, D. Haley, L.T. Stephenson, S.P. Ringer, Origin of the spatial resolution in atom probe microscopy, Appl. Phys. Lett., 95 (2009) 1-3.

S.K. Seal, K. Rajan, S. Aluru, M.P. Moody, A.V. Ceguerra, S.P. Ringer, Tracking Nanostructural Evolution in Alloys: Large-scale Analysis of Atom Probe Tomography Data on Blue Gene/L, in: The 37th International Conference On Parallel Processing (ICPP-08), Portland, Oregon, USA 2008.

M.P. Moody, L.T. Stephenson, A.V. Ceguerra, S.P. Ringer, Quantitative binomial distribution analyses of nanoscale like-solute atom clustering and segregation in atom probe tomography data, Microscopy Research and Technique, 71 (2008) 542-550.

B. Gault, M.P. Moody, D.W. Saxey, J.M. Cairney, Z. Liu, R. Zheng, R.K.W. Marceau, P.V. Liddicoat, L.T. Stephenson, S.P. Ringer, Atom Probe Tomography at The University of Sydney, in:  Advances in Materials Research - Frontiers in Materials Research, Springer, Berlin Heidelberg, 2008, pp. 187-216.

B. Gault, F. de Geuser, L.T. Stephenson, M.P. Moody, B.C. Muddle, S.P. Ringer, Estimation of the reconstruction parameters for atom probe tomography, Microscopy and Microanalysis, 14 (2008) 296-305.

L.T. Stephenson, M.P. Moody, P.V. Liddicoat, S.P. Ringer, New techniques for the analysis of fine-scaled clustering phenomena within atom probe tomography (APT) data, Microscopy and Microanalysis, 13 (2007) 448-463.

M.P. Moody, L.T. Stephenson, P.V. Liddicoat, S.P. Ringer, Contingency table techniques for three dimensional atom probe tomography, Microscopy Research and Technique, 70 (2007) 258-268.

M.F. Herman, M.P. Moody, Numerical study of the accuracy and efficiency of various approaches for Monte Carlo surface hopping calculations - art. no. 094104, Journal of Chemical Physics, 122 (2005) 94104-94104.

M.P. Moody, P. Attard, Monte Carlo simulation methodology of the ghost interface theory for the planar surface tension, Journal of Chemical Physics, 120 (2004) 1892-1904.

M.F. Herman, O. El Akramine, M.P. Moody, Globally uniform semiclassical surface-hopping wave function for nonadiabatic scattering, Journal of Chemical Physics, 120 (2004) 7383-7390.

M.P. Moody, F. Ding, M.F. Herman, Phase corrected higher-order expression for surface hopping transition amplitudes in nonadiabatic scattering problems, Journal of Chemical Physics, 119 (2003) 11048-11057.

M.P. Moody, P. Attard, Curvature-dependent surface tension of a growing droplet - art. no. 056104, Physical Review Letters, 9105 (2003) 6104-6104.

M.P. Moody, P. Attard, Homogeneous nucleation of droplets from a supersaturated vapor phase, Journal of Chemical Physics, 117 (2002) 6705-6714.

P. Attard, M.P. Moody, J.W.G. Tyrrell, Nanobubbles: the big picture, Physica A-Statistical Mechanics and Its Applications, 314 (2002) 696-705.

M.P. Moody, P. Attard, Curvature dependent surface tension from a simulation of a cavity in a Lennard-Jones liquid close to coexistence, Journal of Chemical Physics, 115 (2001) 8967-8977.


Projects Available

Atomic-Scale Trapping of Hydrogen Isotopes in Plasma Facing Fusion Reactor Components
D. Haley / M. Moody

Plasma facing components in fusion reactors are subject to high doses of implantation of energetic particles, i.e. deuterium (D), tritium (T) and helium. The damage caused by neutron irradiation can act as trapping sites for implanted D and T particles in tungsten. Retention of T in the material is a serious safety concern. If this effect is to be prevented, minimized or reversed, it is critical that the mechanism of this trapping, the diffusion of T with the tungsten and its interactions with crystal defects be better understood. However, hydrogen in materials is notoriously difficult to visualise, even with modern high resolution microscopes. In this project, atom probe instrumentation, experimental protocols and data analysis techniques will all be developed to enable and optimise the characterisation of the 3D distribution of hydrogen and its interaction with irradiation-damaged microstructure. The techniques developed here to visualise atomic hydrogen in the microstructure of an engineering material will have application to addressing problems in a very wide range of other material systems.

Also see homepages: Michael Moody

Atomic-Scale Insights to the Role of Carbon in the Performance of Nitride Semiconductor Devices
M. Moody / P. Bagot / R. Oliver

Nitride semiconductor devices incorporate a high density threading of dislocations. Assessing the chemical environment at the dislocation core is key to understanding the impact of these defects on material properties, and hence the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. In particular the segregation of low concentrations of carbon to dislocations has been tentatively linked to a wide range of technologically significant phenomena in nitride material. However, its precise role, and the mechanisms by which it influences optoelectronic properties remains poorly understood. This project, in collaboration with Cambridge Centre for Gallium Nitride, will develop advanced atom probe techniques, as part of a novel multi-microscopy approach, to target direct atomic-scale imaging of carbon segregation to dislocations to investigate proposed links to emission properties of the near-dislocation region in InGaN; reduction of leakage currents through GaN buffer layers and the formation of deep level traps which reduce the reliability of GaN-based high electron mobility transistors.

Also see homepages: Michael Moody

Correlating the evolution of atomic-scale microstructure with deterioration of mechanical properties in T91 steel samples from the BOR60 reactor.
M Moody / A Kareer / P Bagot / J Lim

T91 steel is a promising candidate material for high-dose structural components in both fusion and fission nuclear reactors. However, a better understanding of how the atomic-scale microstructure evolves under the extreme temperature and irradiation conditions within the reactor and correlating this to the deterioration of mechanical properties, is still needed to predict safe operating lifetimes of the component. This project will combine the 3D atomic-scale microscopy provided by atom probe tomography with micro-mechanical testing to systematically investigate the effects of irradiation exposure in a set of samples from the BOR60 fast reactor in Russia. The research will be undertaken in collaboration with partners at the UKAEA, University of Michigan and Oak Ridge National Laboratory and may also include scope to investigate the use of dual ion beam irradiation as a surrogate for neutrons to facilitate a wider range of dose and temperature effects in this material.

Also see homepages: Michael Moody

Atomic-scale Studies of Stress Corrosion Cracking in Nickel-Based Superalloys for Aerospace Gas Turbine Engines
P. Bagot / M. Moody

Nickel-based superalloys are at the heart of all modern gas-turbine aerospace engines, where they must withstand extreme temperatures and demanding combustion environments. While these materials have been employed and developed over decades of successful use, little is understood concerning the initiation and development of cracks, and how this is affected by the dynamic, unpredictable environments experienced by the components. In this project, atom probe tomography will be utilised to examine the 3D microstructure around cracks at the nanoscale in single-crystal alloys, identifying changes in alloying element behaviour, as well as the ingress of corrosive contaminants. This project will contribute to a larger multi-institutional programme of research which aims to make significant inroads into understanding stress corrosion cracking behaviour. The project will provide regular opportunities to experience research in an industrial context with Rolls-Royce plc as well as collaborating with other scientists utilising complementary characterisation techniques at Oxford and Imperial College London.

Also see homepages: Michael Moody

Also see a full listing of New projects available within the Department of Materials.