M.Eng in Materials Science
Prelims Course Handbook 2019-20
The M.Eng in Materials Science Prelims Course Handbook

Handbook 2019-20, Version 1 (13/10/19)

This handbook applies to students starting the degree programme in Michaelmas term 2019. The information in this handbook may be different for students starting in other years.

The Examination Regulations relating to this course are available at www.admin.ox.ac.uk/examregs/2019-20/peinmatescie/studentview. If there is a conflict between information in this handbook and the Examination Regulations then you should follow the Examination Regulations. If you have any concerns in the first instance please contact Philippa Moss (philippa.moss@materials.ox.ac.uk).

The information in this handbook is accurate as at 13th October 2019, however it may be necessary for changes to be made in certain circumstances, as explained at www.ox.ac.uk/coursechanges. If such changes are made the Department will publish a new version of this handbook together with a list of the changes and students will be informed.

<table>
<thead>
<tr>
<th>Version</th>
<th>Action</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.0</td>
<td>Published MT19 (electronic only)</td>
<td>13/10/19</td>
</tr>
</tbody>
</table>
Table of Contents

Welcome...6
Important dates and deadlines ..7
How to use this handbook ..8
Other sources of information ...9
General ..9
Useful websites...10
Freshers’ Induction Programme ..11
 1 Where to find places in the Department ...12
 1.1 Hume-Rothery Building (HR) ..12
 1.2 Holder Building (HB) (includes Common Room (Café))12
 1.3 Engineering and Technology Building (ETB)...12
 1.4 21 Banbury Road (BR)..12
 1.5 Thom Building (Department of Engineering Science)..............................13
 1.6 Information Engineering Building (Department of Engineering Science)13
 2 Staff of the Department of Materials ..13
 2.1 Professors ...13
 2.2 Associate Professors and Lecturers ..14
 2.3 Senior Research Fellows and others involved in undergraduate teaching15
 2.4 Support staff ..15
 2.5 Where to find members of staff ...16
 3 General Safety and Security ..18
 3.1 Fire ..18
 3.2 Security ..18
 3.3 University Policy Statements ...18
 4 Who to ask for information about the course ..18
 5 Consultation, Feedback from you to us, on our teaching provision and feedback from us to you on your work and progress ...20
 5.1 The Joint Consultative Committee for Undergraduates (JCCU), Feedback from students to the Department, and other Student Representation ..20
 5.2 Feedback to our Students ..21
 6 Overview of the Course ..22
 6.1 General Structure of the Materials Science Programme22
 7 An Outline of the Programme Content, Assessment and Key Progression Criteria for the M.Eng in Materials Science ...23
 7.1 The First Year ...26
 7.2.1 First Year Recommended Teaching Pattern ...28
 7.2.2 Thinking ahead to the second year ...30
7.2 The Second and Third Years ...30
7.3 The Fourth Year (M.Eng) ...31
7.4 Coursework ..31
7.5 The Lecture Timetable ..32
8 Teaching and Learning throughout your Degree32
 8.1 Bridging Programme ...33
 8.2 Learning Development, Study Skills and Tutorials33
 8.3 Research-Teaching Nexus ...35
 8.4 Communication Skills ..35
9 Foreign Language Study ...36
 9.1 Additional Study in the First Year - Foreign Language37
 9.2 Foreign Language Option in the Second Year38
 9.3 Additional study in the Fourth Year - Foreign Language38
10 Practicale ..39
 10.1 Safety in the Teaching Laboratory ..40
 10.2 First Year Practicals ...41
 10.3 Absence from practical labs ...41
 10.4 Practical Assessment ...42
 10.5 Submission of reports and marking arrangements43
 10.6 Penalties ..44
11 Crystallography Classes ...44
12 Computing for Materials Science - Classes and Project44
13 Satisfactory Performance in Coursework ..45
14 Plagiarism ...46
15 Teaching Norms (Expectations of Study & Student Workload)46
 15.1 Lectures & Laboratory Classes (as detailed in the General Scheme) ...47
 15.2 Tutorials ...47
 15.3 Engineering Drawing & CAD Classes ...48
 15.4 Maths Classes and Materials Options Classes48
 15.5 Other Coursework and Final Year Projects48
 15.6 Fourth year Part II Projects ...48
 15.7 Revision ...48
 15.8 Paid Work Experience ..49
16 Other activities ..50
 16.1 The Industrial Tour ...50
 16.2 Industrial Visits ..50
 16.3 Summer Vacation Projects in Industry and University Research Laboratories50
 16.4 Institute of Materials, Minerals and Mining (IOM3)51
16.5 Oxford Materials Society (OMS) ... 51
16.6 Student Materials Society (MatSoc) ... 51
17 Libraries .. 51
18 Computing ... 52
18.1 Facilities available ... 52
18.2 Use of the internet facilities ... 53
18.3 Email .. 53
18.4 Social Media .. 53
18.5 Programming and Computation ... 54
19 Important dates and deadlines ... 54
20 Examinations (for students embarking on the “Prelims” programme in October 2019) ... 54
20.1 Preliminary Examination .. 55
20.2 Calculators and SMP tables in examinations .. 57
20.3 Examiners .. 57
20.4 Entry for University examinations and examination dates 57
20.5 Preparing for examinations ... 57
20.6 Collections .. 58
21 Student prizes ... 58
22 Careers and Vacation jobs ... 58
23 If you need help .. 60
23.1 Asking for assistance ... 60
23.2 Special Needs .. 62
24 Complaints and Appeals .. 62
25 Policies and Regulations .. 62
Appendix A The University’s Complaints and Appeals Procedures 63
Appendix B Plagiarism ... 65
Appendix C Learning Development (Skills and Outcomes) 70
Appendix D Intended Learning Outcomes ... 73
Appendix E University Rules for Computer Use ... 77
Appendix F Examination Conventions 2018/19 ... 84
Appendix G University Policy on Intellectual Property Rights 95
Appendix H Year 1 Foreign Language Study .. 98
Appendix I Application for 2nd year Foreign Language Option 99
Appendix J Crystallography Class Procedures .. 100
Appendix K Electronic Declaration of Authorship for online practical reports .. 101
Appendix L Teaching Labs – Lab Notebook marking sheet 102

Table of Contents
Welcome

A very warm welcome to the Oxford University Department of Materials. We aspire to be one of the best Departments of Materials Science in the world, and the undergraduate students are an important component of our past and future success.

The purpose of this handbook is to outline for the First Year the teaching and other arrangements for undergraduates studying within the Department. Tutorials will be organised separately by your College tutor. We offer a single undergraduate programme, The M.Eng in Materials Science (MS), and the handbook briefly describes the structure of lectures, practicals, tutorials and examinations for this, together with library, computing, career guidance, safety, counselling and other support facilities.

Our aim is to provide you with education and training that will enable you to develop the knowledge, skills and understanding that will help you to obtain employment at a professional level in industry or government, to pursue subsequent graduate studies, or to start your own high-tech business! The 4-year programme offers graduates an accredited M.Eng. honours degree, covering the science and engineering of materials within the context of a well-rounded general education. The programme is designed to balance the coverage of different elements of materials science. The coverage of materials includes metals, ceramics, polymers and composites. The coverage of disciplines includes physics, chemistry, engineering and mathematics and the coverage of properties includes mechanical, thermal, electronic and optical. We also encourage you to investigate the relationship between Materials Science and Society; wealth creation, employment generation and new scientific and technological developments.

Everyone in the Department is committed to achieving our aims, and all believe that the Department should be a friendly and exciting place for study and work. We look forward to your contribution and we hope that you will find your time here both stimulating and enjoyable.

Professor Angus J Wilkinson and Professor Pete D Nellist
Joint Heads of Department
Important dates and deadlines

Michaelmas Term:
- **Week 1 Wednesday** deadline for registration with Language Centre for Foreign Language course.

- **Week 2 Monday** deadline for submission of form to Academic Admin for the Foreign Language course, once registration has been confirmed by the Language Centre. **Departmentally co-ordinated.**

Hilary Term:
- **Week 5 Tuesday Noon** **EXAMINATION:** submission of CMS MATLAB Project work.
- **Week 7 Friday Noon** deadline for receiving entries for Prelims. **College co-ordinated.**

Trinity Term:
- **Week 6 Friday 10.00 am** **EXAMINATION:** All practical reports and lab notebooks to be released to the Examiners

Trinity Term:
- **Week 7 Monday** **EXAMINATION:** Prelims written exam papers begin (provisional).

- **Week 8 Friday** Deadline for submission of application for Foreign Language Option in Year 2. **Departmentally co-ordinated.**

Long vacation:
- **July 2020** deadline for receiving entries for Prelims resits. **College co-ordinated.**

- **September 2020:** **EXAMINATION** Prelims resits begin.
How to use this handbook

This handbook is a guide and reference for you throughout the first year of your Materials course at Oxford. It is your responsibility to read the handbook and familiarise yourself with the requirements of your course. It provides you with information to help you understand the processes and procedures of the Department and other facilities such as libraries and computers to which you have access. Additionally, it will give you details of how you will be assessed, what skills you should develop and how to get the most out of your first year. A new handbook will be issued to you at the start of your second year which is the reference for Part I of your Final Honours School, and in your fourth year as the guide to Part II of your Final Honours School. You will also need to refer to the lecture synopses that are available on the Department of Materials website: www.materials.ox.ac.uk. The synopses reflect the intended content of the corresponding lecture courses, although the lecturer may include material which enhances the syllabus but which does not form part of the syllabus for the examinations. Supporting reading lists are included within the lecture synopses.

The full lecture programme is captured in a document called the “General Scheme of Teaching”. This describes how the programme fits together, setting out the structure, the contact hours and the terms in which each lecture course is delivered. The termly lecture lists provide the detail of the actual schedule. Used together, these provide you with a detailed outline of the entire programme.

The General Scheme of Teaching and each term’s lecture list will be published online on the Department’s website at: www.materials.ox.ac.uk/teaching/lecturelists.html. Lecture lists are subject to change. Lecture lists are usually not published till 1-2 weeks before term starts.

Any changes to the published lecture lists will be communicated to you via email; this is our primary method of disseminating information and you must ensure that you check your email regularly (see Section 18.3 for further details).

YOUR COURSE HANDBOOK SHOULD BE YOUR FIRST PORT OF CALL FOR ANY MINOR QUERIES CONCERNING THE COURSE. For other concerns or if you genuinely cannot find the correct information then your College tutor and the Academic Administration team are happy to help.

Course handbooks, together with supplementary information, are also published on the Department of Materials website (www.materials.ox.ac.uk/teaching) in searchable form.
Other sources of information
You should also receive:

- further information about your particular college’s regulations and requirements,
- The Oxford Students’ website and Student Handbook (formerly known as the Proctors’ and Assessor’s Memorandum - available electronically at www.ox.ac.uk/students/academic/student-handbook). This includes general information about health and welfare matters; the Student Union; accommodation; sport and recreation; transport; personal safety and security. It provides a source of information about the University’s academic support services including the University Language Centre and Careers Services. The booklet also gives the University’s formal, statutory rules and requirements in relation to Conduct of Examinations, Harassment, Freedom of Speech, etc.

Further details may be found via the student portal of the University intraweb (www.ox.ac.uk/students).

General
Comments or suggestions for matters which might be amended or which might usefully be covered in future editions of this handbook would be welcome. They should be sent to the Deputy Administrator (Academic) in the Department of Materials, or emailed to philippa.moss@materials.ox.ac.uk.

If you require this handbook in a different format, please contact the Academic Administrator: philippa.moss@materials.ox.ac.uk or 73750.
Useful websites

Materials Department website
 www.materials.ox.ac.uk

Undergraduate teaching page
 www.materials.ox.ac.uk/teaching.html

CANVAS
 https://canvas.ox.ac.uk

MPLS Online Bridging Programme
 http://mplsbridging.conted.ox.ac.uk/

Oxford University information for students
 www.ox.ac.uk/students/

Oxford Exam Papers Online (OXAM)
 https://weblearn.ox.ac.uk/portal/hierarchy/oxam

Examination Regulations
 www.admin.ox.ac.uk/examregs/

Electronic resources available through the University libraries
 www.bodleian.ox.ac.uk/eresources

Radcliffe Science Library
 www.bodleian.ox.ac.uk/science

Careers Service
 www.careers.ox.ac.uk

Language Centre
 www.lang.ox.ac.uk

Institute of Materials, Minerals and Mining
 www.iom3.org

Materials Society (Undergraduate)
 www.matsoc.com/
Freshers’ Induction Programme
1.15 – 5.00 pm Friday 0th Week Michaelmas Term 2019 (11th October)

1.15 p.m. Arrival and sign in
Philippa Moss & Jackie Jordan, Academic Admin

Coffee & Tea

1.30 p.m. Brief tour of the Department
2nd year students including JCCU & MatSoc Committee members

2.00 p.m. Introduction to the Department
Professor Pete Nellist, Joint Head of Department

2.15 p.m. Equality & Diversity, and Harassment
Professor Pete Nellist, recent Chair of Equality & Diversity Committee

2.30 p.m. Materials Science Course Structure
Dr Adrian Taylor, Director of Studies and Chair of Department of Materials Academic Committee

2.55 p.m. Departmental Library
Grace Sewell, Departmental Librarian

3.00 p.m. Overview of Canvas
Dr Adrian Taylor and Ms Philippa Moss

3.10 p.m. Health and Safety
Dr Paul Bagot, Departmental Safety Officer

3.20 p.m. Practical Classes
Professor Sergio Lozano-Perez, Practical Class Organiser

3.30 p.m. Outreach Opportunities
Jayne Shaw, Outreach Manager

3.35 p.m. Materials Society (MatSoc)
Veera Vudathu and Izzy Hardwick, Committee Members

3.45 p.m. Introduction to the JCCU & Election of 1st year representatives
Yuyang (Milo) Shen, 4th year JCCU representative (and former Chair)

4.05 p.m. Undergraduate Questionnaires & OU Card Return
followed by Photographs, Tea and Cake

5.00 p.m. Depart
1 Where to find places in the Department

The map of the Science Area shows the location of various buildings of interest to Materials undergraduates. The location of some places of note within the various buildings is listed below.

Entry to the Hume-Rothery Building and 21 Banbury Road is controlled by means of a swipe card access system. All people wishing to enter these buildings must carry their University card and use this to swipe themselves in. All undergraduates should have been entered automatically into the system; this will give you entry between 8 am – 6 pm, Monday - Friday. If you have any problems with your swipe card, please see Reception.

1.1 Hume-Rothery Building (HR)
The Lecture Theatre is on the ground floor.
The Reception Area is on the ground floor.
The Director of Studies’ office is room 30.19 on the second floor.
The Academic Admin Office is room 30.05 on the second floor.
The Finance team is located on the second floor.
The Departmental Library is in room 20.19 on the first floor.
The main photocopier is in the foyer by Reception on the ground floor.
The Head of Department's office is room 30.16 on the second floor.
The Head of Administration & Finance's office is room 30.15 on the second floor.
The Administrative Secretary's office is room 30.15 on the second floor.
Stores are in room 10.17 on the ground floor.

1.2 Holder Building (HB) (includes Common Room (Café))
The Teaching Laboratory and the Computer Room (room 316) are on level 3.
The Electron Microscope Suite is on level 1.
The Common Room, which is a shared facility with the Department of Engineering Science, is on level 2. Undergraduates are welcome to use the Common Room, where you can buy coffee, tea, lunches and snacks.

1.3 Engineering and Technology Building (ETB)
The ETB is also known as the Wolfson Building.
The Wolfson Committee Room (or ETB Committee Room) is room 20.30.

1.4 21 Banbury Road (BR)
The Lecture Theatre is room 00.19 on the ground floor.
The Conference Room is room 10.04 on the first floor.
1.5 Thom Building (Department of Engineering Science)
Lecture Rooms 1, 2 and 3 are on level 1.
Lecture Rooms 4, 5 and 6 are on level 8.

1.6 Information Engineering Building (Department of Engineering Science)
The IEB is most easily accessed through the ETB Building.
Lecture Room 7 is on the ground floor.
Lecture Room 8 is on the ground floor.

2 Staff of the Department of Materials

2.1 Professors
Professor Simon Benjamin, Professor of Quantum Technologies, Fellow of Wolfson College
Professor Harish Bhaskaran, Professor of Applied Nanomaterials
Professor Andrew Briggs, Professor of Nanomaterials, Director of Quantum Information Processing Interdisciplinary Research Collaboration, Professorial Fellow of St Anne’s College
Professor Peter Bruce FRS, Wolfson Chair in Metallurgy, Professorial Fellow of St Edmund Hall
Professor Sir Richard Brook OBE, FRSE, on leave of absence as Director of the Leverhulme Trust, Honorary Fellow of St Cross College
Professor Martin Castell, Professor of Materials, Fellow of Linacre College
Professor Ralf Drautz, Visiting Professor of Materials
Professor Colin English, Visiting Professor of Materials
Professor Patrick Grant FREng FIMMM, Vesuvius Professor of Materials, Pro-Vice-Chancellor (Research), Fellow of St Catherine’s College
Professor Nicole Grobert, Professor of Materials, Fellow of Corpus Christi College
Professor Chris Grovenor, Professor of Materials, Fellow of St Anne’s College
Professor Sir Peter Hirsch FRS, Emeritus Professor, Emeritus Fellow of St Edmund Hall
Professor Angus Kirkland, Professor of Materials, Fellow of Linacre College
Professor Sergio Lozano-Perez, George Kelley Professor of Materials, Practical Classes Organiser
Professor James Marrow, James Martin Chair in Energy Materials, Deputy Head of Department (Teaching), Chair of Faculty, Fellow of Mansfield College
Professor Michael Moody, Professor of Materials, Chair of Tutors’ Committee, Fellow and Tutor of Trinity College
Professor Peter Nellist, Joint Head of Department, Professor of Materials, Fellow and Tutor of Corpus Christi College
Professor Steve Newbury, RAE Visiting Professor in Future Materials Technology & Business
Professor John Pethica FRS, Visiting Professor of Materials, Fellow of St Cross College
Professor Kyriakos Porfyryakis, Academic Visitor
Professor Roger Reed FREng, Professorial Research Fellow in Materials and Solid Mechanics, Fellow of St Anne’s College
Professor George Smith FRS, Emeritus Professor, Emeritus Fellow of Trinity College
Professor Jason Smith, Professor of Photonic Materials and Devices, Fellow and Tutor of Mansfield College
Professor John Sykes, Emeritus Professor, Emeritus Fellow of Mansfield College
Professor Richard Todd, Professor of Materials, Goldsmiths Fellow and Tutor of St Catherine’s College
Professor Michael Whelan FRS, Emeritus Professor, Emeritus Fellow of Linacre College
Professor Angus Wilkinson, Joint Head of Department, Professor of Materials, Fellow of St Cross College
Professor Peter Wilshaw, Professor of Materials, Fellow and Tutor of St Anne’s College

2.2 Associate Professors and Lecturers
Professor David Armstrong, Associate Professor of Materials, Fellow and Tutor of Corpus Christi College
Professor Hazel Assender, Associate Professor of Materials, Fellow of Linacre College
Professor Lapo Bogani, Associate Professor of Materials
Professor Jan Czernuszka, Harassment Advisor, Associate Professor of Materials, Fellow and Tutor of Trinity College
Professor Marina Galano, Associate Professor of Materials, Fellow and Tutor of Mansfield College
Professor Keyna O’Reilly, Associate Professor of Materials, Fellow and Tutor of The Queen’s College, Part II Project Organiser
Professor Mauro Pasta, Associate Professor of Materials, Fellow and Tutor of St Edmund Hall
Professor Susie Speller, Associate Professor in Materials, Fellow and Tutor of St Catherine’s College
Professor Andrew Watt, Associate Professor, Safety Officer, Fellow of St Cross College
Professor Rob Weatherup, Associate Professor, Fellow and Tutor of The Queen’s College
Professor Jonathan Yates, Associate Professor in Materials Modelling, Fellow and Tutor of St Edmund Hall, Maths and CMS Class Organiser
2.3 Senior Research Fellows and others involved in undergraduate teaching

Dr Paul Adamson, Research Fellow
Dr Chris Allen, Research Fellow
Dr Natalia Ares, Senior Research Fellow TWCF
Dr Paul Bagot, Acting Departmental Safety Officer
Dr Jenny Barnes, Academic Visitor
Dr Sebastian Bonilla, Royal Academy of Engineering Research Fellow
Dr Peiyu Chen, Research Fellow and Crystallography Class Organiser
Dr Wen Cui, Research Fellow
Dr Ed Darnbrough, Research Fellow and Crystallography Class Organiser
Dr Barbara Gabrys, Academic Visitor
Dr Yilun Gong, Research Fellow
Dr Jack Haley, Research Fellow
Dr Ann Huang, Senior Research Fellow
Dr Phani Karamched, Research Fellow
Dr Judy Kim, Departmental Lecturer
Dr Merel Lefferts, Research Fellow
Dr Emanuela Liberti, Research Fellow
Dr Enzo Liotti, Departmental Lecturer and Industrial Visits Organiser
Dr Bo-Shian Li, Research Fellow
Dr Rebecca Nicholls, EPSRC Fellow in Materials for Energy Applications
Dr Chris Patrick, Departmental Lecturer
Dr Alex Robertson, Royal Society University Research Fellow
Dr Cha Salter, Research Fellow
Dr Ed Tarleton, Senior Research Fellow in Materials Engineering
Professor John Titchmarsh, Senior Visiting Research Fellow
Dr Stuart Wilkinson, Business Plan Tutor
Dr Neil Young, Senior EM Research Scientist

2.4 Support staff

Mr Chris Akinola, IT Officer
Mrs Marion Beckett, PA to the Director of Studies and Graduate Studies Secretary
Ms Josceline Edwards, Academic Administrative Officer
Mrs Alison Jewitt, Administrative Secretary
Ms Jackie Jordan, Academic Administrative Officer
Ms Lorraine Laird, PA to the Head of Department
Mr Tim McAree, Deputy Administrator (Finance)
Ms Philippa Moss, Deputy Administrator (Academic), Disability Contact
Dr Jo Roberts, Deputy Administrator (Research & Finance)
Mr Rob Saunders, IT Officer
Mrs Christina Foldbjerg Holdway, Teaching Class and Chemical Safety Technician
Mrs Grace Sewell, Librarian
Mrs Jayne Shaw, Access and Outreach Manager
Dr Adrian Taylor, Director of Studies, Chairman of Teaching Committee, Team Design Project Organiser, Summer Placements Advisor, Admissions Coordinator
Ms Diana Passmore, Teaching Laboratory Technician
Dr Paul Warren, Senior IT Officer

2.5 Where to find members of staff

Table 1 lists the locations, telephone numbers and email addresses of members of staff. Note that all email addresses end with @materials.ox.ac.uk. The full names and locations of buildings can be found in Section 1. You can find telephone numbers and email addresses of members of the University on the www at the URL: www.ox.ac.uk/contact.

Also www.materials.ox.ac.uk/contacts/roles.html gives access to the full business card details.

Table 1: Offices, telephone numbers and email addresses of staff members.

<table>
<thead>
<tr>
<th>Name</th>
<th>Building</th>
<th>Room</th>
<th>Phone</th>
<th>First part of email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. D.E.J. Armstrong</td>
<td>BR</td>
<td>20.08</td>
<td>73708</td>
<td>david.armstrong</td>
</tr>
<tr>
<td>Prof. H.E. Assender</td>
<td>BR</td>
<td>10.18</td>
<td>73781</td>
<td>hazel.assender</td>
</tr>
<tr>
<td>Prof. S.C. Benjamin</td>
<td>PR</td>
<td>40.02</td>
<td>73732</td>
<td>simon.benjamin</td>
</tr>
<tr>
<td>Prof. G.A.D. Briggs</td>
<td>PR</td>
<td>30.05</td>
<td>73725</td>
<td>andrew briggs</td>
</tr>
<tr>
<td>Prof. M.R. Castell</td>
<td>ETB</td>
<td>40.24</td>
<td>73786</td>
<td>martin.castell</td>
</tr>
<tr>
<td>Prof. J.T. Czernuszka</td>
<td>BR</td>
<td>10.15</td>
<td>73771</td>
<td>jan.czernuszka</td>
</tr>
<tr>
<td>Prof. M.L. Galano</td>
<td>BR</td>
<td>20.07</td>
<td>73776</td>
<td>marina.galano</td>
</tr>
<tr>
<td>Prof. P.S. Grant Galano</td>
<td>BB</td>
<td>30.16</td>
<td>83702</td>
<td>patrick.grant</td>
</tr>
<tr>
<td>Prof. N. Grobert</td>
<td>BB</td>
<td>20.09</td>
<td>83720</td>
<td>nicole.grobert</td>
</tr>
<tr>
<td>Prof. C.R.M. Grovenor</td>
<td>ETB</td>
<td>50.12</td>
<td>73751</td>
<td>chris.grovenor</td>
</tr>
<tr>
<td>Name</td>
<td>Building</td>
<td>Room</td>
<td>Phone</td>
<td>First part of email</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Mrs A.J. Jewitt</td>
<td>HR</td>
<td>30.15</td>
<td>73666</td>
<td>alison.jewitt</td>
</tr>
<tr>
<td>Prof. A.I. Kirkland</td>
<td>HB</td>
<td>30.07</td>
<td>73662</td>
<td>angus.kirkland</td>
</tr>
<tr>
<td>Ms L.I. Laird</td>
<td>HR</td>
<td>30.17</td>
<td>73737</td>
<td>lorraine.laird</td>
</tr>
<tr>
<td>Dr E. Liotti</td>
<td>BB</td>
<td>10.03</td>
<td>83714</td>
<td>enzo.liotti</td>
</tr>
<tr>
<td>Prof. S. Lozano-Perez</td>
<td>HB</td>
<td>30.23</td>
<td>73707</td>
<td>sergio.lozano-perez</td>
</tr>
<tr>
<td>Prof. T.J. Marrow</td>
<td>BR</td>
<td>10.12</td>
<td>73938</td>
<td>james.marrow</td>
</tr>
<tr>
<td>Prof. M.P. Moody</td>
<td>HR</td>
<td>30.21</td>
<td>73693</td>
<td>michael.moody</td>
</tr>
<tr>
<td>Ms P.J. Moss</td>
<td>HR</td>
<td>30.05</td>
<td>73750</td>
<td>philippa.moss</td>
</tr>
<tr>
<td>Prof. P.D. Nellist</td>
<td>HB</td>
<td>30.16</td>
<td>73737</td>
<td>peter.nellist</td>
</tr>
<tr>
<td>Prof. K.A.Q. O'Reilly</td>
<td>BR</td>
<td>10.02</td>
<td>73743</td>
<td>keyna.oreilly</td>
</tr>
<tr>
<td>Ms D. Passmore</td>
<td>HB</td>
<td>30.20</td>
<td>73658</td>
<td>diana.passmore</td>
</tr>
<tr>
<td>Prof. M. Pasta</td>
<td>HB</td>
<td>40.22</td>
<td>83324</td>
<td>mauro.pasta</td>
</tr>
<tr>
<td>Dr C.E. Patrick</td>
<td>BB</td>
<td></td>
<td>12790</td>
<td>christopher.patrick</td>
</tr>
<tr>
<td>Mrs G. Sewell</td>
<td>BB</td>
<td>20.19</td>
<td>73697</td>
<td>library / grace.sewell</td>
</tr>
<tr>
<td>Prof. J.M. Smith</td>
<td>PR</td>
<td>30.10</td>
<td>73780</td>
<td>jason.smith</td>
</tr>
<tr>
<td>Prof. S.C. Speller</td>
<td>BR</td>
<td>20.05</td>
<td>73734</td>
<td>susannah.speller</td>
</tr>
<tr>
<td>Dr A.O. Taylor</td>
<td>HR</td>
<td>30.19</td>
<td>83227</td>
<td>adrian.taylor</td>
</tr>
<tr>
<td>Prof. R.I. Todd</td>
<td>ETB</td>
<td>40.23</td>
<td>73718</td>
<td>richard.todd</td>
</tr>
<tr>
<td>Dr P.J. Warren</td>
<td>HR</td>
<td>30.06</td>
<td>73727</td>
<td>paul.warren</td>
</tr>
<tr>
<td>Prof. A.A.R. Watt</td>
<td>BB</td>
<td>10.45</td>
<td>13456</td>
<td>andrew.watt</td>
</tr>
<tr>
<td>Prof. R.S. Weatherup</td>
<td>PR</td>
<td>30.12</td>
<td>73724</td>
<td>robert.weatherup</td>
</tr>
<tr>
<td>Prof. A.J. Wilkinson</td>
<td>HR</td>
<td>30.16</td>
<td>73737</td>
<td>angus.wilkinson</td>
</tr>
<tr>
<td>Prof. P.R. Wilshaw</td>
<td>ETB</td>
<td>50.15</td>
<td>73736</td>
<td>peter.wilshaw</td>
</tr>
<tr>
<td>Prof. J.R. Yates</td>
<td>MML</td>
<td>20.03</td>
<td>12797</td>
<td>jonathan.yates</td>
</tr>
</tbody>
</table>
3 General Safety and Security

3.1 Fire
You should familiarise yourself with the general procedures involved if a fire breaks out. These are described below.

If a fire breaks out:
The main consideration is to get everyone out safely.
Sound the fire alarm (break glass alarm points are situated at all exits) and dial 999 from any phone.
Follow the evacuation procedure:
Familiarise yourself with escape routes.
- Do Not wedge open or obstruct fire doors.
- Do Not use lifts.
If there is time, close windows and doors, and switch off electrical appliances.
Go to the assembly point.

3.2 Security
Please do not leave personal belongings around. Thefts do occur with depressing regularity! You must use your university card to gain access to the Hume-Rothery Building (outside the Reception area only) and 21 Banbury Road. If you leave a Departmental building, please ensure that the door closes securely after you.

3.3 University Policy Statements
For further information on University Policy Statements and full statements of Safety Organisation, please visit the University Web Site at: www.admin.ox.ac.uk/safety/.

Further information on safety in the Teaching Laboratory is found in Section 10.1.

4 Who to ask for information about the course
If you have any queries about the running and scheduling of your course, i.e. deadlines for coursework, timetable issues, the titles of coursework, when the exams are going to start, etc. then you should consult the Deputy Administrator (Academic) and her team as your first port of call. If they cannot help, they will refer your question to the appropriate member of staff.
Exceptions are:

a) matters concerning voluntary industrial placements, the industrial tour and team design projects, for which your first port of call should be the Director of Studies, and

b) matters concerning Part II projects, which are looked after by the Part II Project Organiser, assisted by the Academic Administrative Assistant.

Table 2 lists the staff members, both academic and non-academic, who are involved with the administration of the course. Please note though, if you have worries about your academic work (for example, maybe you feel overwhelmed or confused about certain topics) then you should obviously first consult your College Tutor.

Table 2: Administration of the course

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Adrian Taylor</td>
<td>Director of Studies & Chair of the Academic Committee</td>
</tr>
<tr>
<td>Ms Philippa Moss</td>
<td>Deputy Administrator (Academic), Disability Contact</td>
</tr>
<tr>
<td>Ms Jackie Jordan</td>
<td>Academic Administrative Officer</td>
</tr>
<tr>
<td>Ms Josceline Edwards</td>
<td>Academic Administrative Officer</td>
</tr>
<tr>
<td>Mrs Marion Beckett</td>
<td>PA to the Director of Studies, Graduate Studies Secretary</td>
</tr>
<tr>
<td>Prof. Sergio Lozano Perez</td>
<td>Practical Courses Organiser</td>
</tr>
<tr>
<td>Prof. Keyna O’Reilly</td>
<td>Part II Project Organiser</td>
</tr>
<tr>
<td>Dr Enzo Liotti</td>
<td>Industrial Visits Organiser</td>
</tr>
<tr>
<td>Prof. Jonathan Yates</td>
<td>CMS and Maths Class Coordinator</td>
</tr>
<tr>
<td>Prof. Michael Moody</td>
<td>Chair of the Tutors’ Committee</td>
</tr>
<tr>
<td>Ms Diana Passmore</td>
<td>Teaching Lab Technician</td>
</tr>
<tr>
<td>Dr Paul Bagot</td>
<td>Acting Departmental Safety Officer, Chair of the Safety Committee</td>
</tr>
<tr>
<td>Dr Peiyu Chen</td>
<td>Crystallography Class Organiser</td>
</tr>
<tr>
<td>Dr Ed Darnbrough</td>
<td>Crystallography Class Organiser</td>
</tr>
<tr>
<td>Dr Paul Warren</td>
<td>IT Manager</td>
</tr>
</tbody>
</table>
5 Consultation, Feedback from you to us, on our teaching provision
and feedback from us to you on your work and progress

5.1 The Joint Consultative Committee for Undergraduates (JCCU), Feedback
from students to the Department, and other Student Representation

The JCCU constitution states:

‘The committee shall consider and make recommendations upon teaching arrangements, lectures,
seminars, the practical course, syllabuses, examinations, libraries and welfare of junior members’.

In other words, the JCCU provides a direct opportunity for you to constructively criticise, praise and
complain about the course, and also to suggest improvements. Information about the JCCU,
including the current student representatives, and previous minutes can be found at:
www.materials.ox.ac.uk/teaching/ug/jccu.html, and via Canvas.

The Committee consists of, normally, three students from each year group, as well as members of
academic staff. We meet once a term over a light lunch. The Chair is always an undergraduate
(currently Yuyang Shen (yuyang.shen@stcatz.ox.ac.uk)), and the Secretary is currently the Deputy
Administrator (Academic), Philippa Moss, who is also an ex officio member of the Committee.
Other ex officio members of the Committee are the Director of Studies, Dr Adrian Taylor, the Chair
of Faculty, Prof. James Marrow, the Practical Courses Organiser, Prof. Sergio Lozano Perez, and
the Part II Project Organiser, Prof Keyna O'Reilly.

Probably the most obvious indication to undergraduates of the JCCU's existence is the lecture and
coursework feedback questionnaires that are considered by the Committee each term. We are
currently using electronic questionnaires and the online surveys will be available towards the end
of each course or piece of coursework. The questionnaires are analysed and summarized by the
Deputy Administrator (Academic).

Positive comments are encouraged as well as negative ones. Please do take the time to complete
these. All comments are carefully considered by the Academic Committee and both major and
minor changes are continually made to courses in the light of student feedback. In addition, a
summary of the completed questionnaires is available to the Head of Department, for use in
lecturers’ annual appraisals, and cases for promotion and references. If you have any issues
regarding the course, from lectures, to practicals, to maths classes, you should raise these with
your year representative who in turn will raise them at the following JCCU meeting.
Another role of the JCCU is to arrange social functions (such as the annual drinks party) and overseas industrial tours (usually annually). Recent successes were the industrial tours to: Sweden in Easter 2016, Beijing in Easter 2017, the south of France in Easter 2018 and Singapore in Easter 2019. The Worshipful Company of Armourers’ and Brasiers’, The Worshipful Company of Ironmongers, The IOM3 and industrial sponsors supported these trips.

The three JCCU members from your year are normally elected on Friday, 0th Week of Michaelmas term - please consider standing for membership of this important committee of the Department. If you have any queries about the JCCU or the course in general, please do not hesitate to contact any member of the JCCU, or the Chair of the Academic Committee. Details of the current members are available on the Materials Teaching Committees area of Weblearn at https://weblearn.ox.ac.uk/portal/site/mpls.materials:tcomms and via Canvas.

The Mathematics, Physical and Life Sciences (MPLS) Division has a similar forum, the Undergraduate Joint Consultative Forum (UJCF), with a broader agenda, on which the Department of Materials has student representation. Further information may be found at www.mpls.ox.ac.uk/study/applicants/student-representation. Student representatives sitting on the Divisional Board are selected through a process organised by the Oxford University Student Union. Details can be found on the Oxford SU website along with information about student representation at the University level.

Students on full-time and part-time matriculated courses are surveyed once per year on all aspects of their course (learning, living, pastoral support, college) through the Student Barometer. Previous results can be viewed by students, staff and the general public at: www.ox.ac.uk/students/life/student-engagement.

Final year undergraduate students are surveyed instead through the National Student Survey. Results from previous NSS can be found at www.unistats.com. The results of these surveys are considered by various committees, namely the JCCU and the Departmental Academic Committee.

5.2 Feedback to our Students

There are many mechanisms by which you gain feedback from us on the quality of your work and receive guidance on how to improve. Your primary resource for feedback and guidance is your college tutor, who will be pleased to talk to you about how to best make use of the feedback we provide.
The following list summarises many of the ways in which we provide you with feedback:

- Discussion in weekly tutorials and/or written comments on returned tutorial work.
- Termly reports on OxCORT.
- Written comments on your lab reports, and the mark you receive for the lab reports and notebook entries.
- Feedback on your answers to college collections (mock exams).
- Exam marks.
- Discussion of work submitted for revision tutorials.
- Your scores in the Y1 on-line maths quizzes.
- Discussion of work submitted for Y1 and Y2 Maths classes.
- Marks and comments on your Y1 Crystallography classwork.
- Comments and peer review on your Y2 Business Plan talks.
- Comments and Peer review on your Y2 Materials Selection poster.
- Comments on your Part II (Y4) Research Project talks.
- Comments on your progress by your team design project supervisor, by Senior Demonstrators for the modelling and characterisation modules and by your Part II project supervisor.

In addition, more generic feedback is found in the detailed reports of the Examiners, which are available to you via Canvas, and in the Y3 workshop “Answering finals exam questions”.

6 Overview of the Course

6.1 General Structure of the Materials Science Programme

The overall structure of the MS programme is shown below. More details of the courses taken each year and the options available are discussed in the following sections.

The Department is responsible for the provision shown in the outline below and your College is responsible for the associated tutorials, tutorial classes (although these are co-ordinated by the Department), and pastoral care. Naturally, the Department also plays a pastoral role even though this responsibility lies primarily with your College. If you have any issues with teaching or supervision please raise these as soon as possible so that they can be addressed promptly. Details of who to contact are provided in Section 24 about complaints and appeals.
7 An Outline of the Programme Content, Assessment and Key Progression

Criteria for the M.Eng in Materials Science

(Please note that this outline is for illustrative purposes and that details may change from time to time)

THE CURRENT OXFORD M.ENG DEGREE PROGRAMME IN MATERIALS SCIENCE IS ACCREDITED BY THE INSTITUTE OF MATERIALS, MINERALS AND MINING (IOM3), ON BEHALF OF THE UK ENGINEERING COUNCIL, TOWARDS THE ACHIEVEMENT OF CHARTERED ENGINEER STATUS.

1st year (‘Prelims’)

Courses

Directly examined

- Physical Foundations of Materials
- Structure and Mechanical Properties of Materials
- Transforming Materials
- Mathematics for Materials Science

Continual assessment

- Practical Course
- Crystallography Classes
- Computing for Materials Science (MATLAB)

Additional elements

- Engineering drawing and CAD classes
- IT skills
- Industrial visits (optional)
- Career planning
- Foreign language (optional)
- Introduction to errors in measurement
- Introduction to LabVIEW

Assessment

First University examination (‘Prelims’): Four written papers; continual assessment components equivalent to a fifth paper. Resit for written papers available in September.

Progression

Normally, students are required to achieve an overall mark of at least 40% in the first year examination in order to progress to Year 2.

(The ‘prelims’ mark does not contribute to the final degree classification upon graduation.)
2nd year & 3rd Year (‘Part I Final Honours School’)

2nd year

Courses

Directly examined

- Structure and transformation of materials
- Electronic properties of materials
- Mechanical properties
- Engineering applications of materials
- Foreign language (optional)
- Supplementary subject (optional)

Continual assessment

- Practical work
- Industrial visits
- Entrepreneurship module

Additional elements

- Mathematics
- Industrial talks
- Communication skills

3rd year

Courses

Directly examined

- Options courses in Materials. For further information about the options courses we offer at present please see our Lecture Course Synopses.

Continual assessment

- Team design project, assessed by written report and oral presentation
- ‘Introduction to Materials Modelling’ module, assessed by written report
- ‘Characterisation of Materials’ or ‘Atomistic Modelling’ module, assessed by written report
- Industrial visits
2nd year & 3rd Year (‘Part I Final Honours School’)……continued

(At the start of Year 3 it is possible to transfer to a 3-year BA degree in Materials Science, graduating at the end of Year 3. A student opting to do this takes a smaller set of materials option lecture courses and carries out a literature-based research module. This option is intended for the occasional student who may change their mind about their career path while following our M.Eng programme. The BA degree is not accredited by the IOM3 / UK Engineering Council.)

Assessment

Final University examination, Part I: Six written papers; continual assessment components equivalent to a further two papers. Resit available one year later.

Progression

Normally, students are required to achieve an overall mark of at least 50% in the Part I assessment in order to progress to Part II)

4th year (extended terms) (‘Part II Final Honours School’)

Courses

Research project (full-time). See examples of previous projects.

Additional elements

- Presentation skills
- Project management skills
- Ethics & Sustainability
- Industrial visits
- Careers events
- Information skills & Reference Management
- Writing skills and IPR
- Foreign language option
- Workshop skills
- MATLAB and LabVIEW

Assessment

Final University examination, Part II (equivalent to 4 papers): Part II dissertation submitted and assessed; Oral examination of project dissertation. No Resit.
7.1 The First Year

During the first year, you will study four different course units, called papers, and attend various general lectures/courses (see Table 3). The outline syllabuses for these units are given below and they are described in detail in the Prelims Lecture Course Synopses Booklet, which can be found on-line at www.materials.ox.ac.uk/teaching/ug/uglectures.html. In addition, you must carry out practical work in Materials, Crystallography and Computing for Materials Science to a satisfactory standard (see Section 13).

Lectures are an important part of the teaching in science subjects, and whilst attendance at lectures is not compulsory in Oxford, we strongly advise you to attend them. In many cases the material that is taught in lectures is not available in books. Tutorials are likely to be based on the lectures so attendance at lectures ensures you will get the most from your tutorials. Lecturers are free to give out lecture handouts for their courses and many do. However, the Departmental policy on this practice allows to the lecturers' discretion as to whether they provide notes or not, and as to how detailed those notes may be.

Note that the use of electronic media (e.g. smart phones) to record material from lectures (visual and audible) is not permitted unless express permission is granted. This includes taking photos of projected slides, not least because of copyright law (the copyright is owned by the lecturer!). See www.admin.ox.ac.uk/edc/policiesandguidance/ for the full policy on the recording of lectures and other teaching sessions.

Table 3: The First Year Courses and General Lectures

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Lectures</td>
<td></td>
</tr>
<tr>
<td>Induction course</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to the Prelims Programme</td>
<td>1</td>
</tr>
<tr>
<td>Teaching, Study Skills & Learning Development</td>
<td>1</td>
</tr>
<tr>
<td>The IOM3 – Benefits of Student Membership</td>
<td>1</td>
</tr>
<tr>
<td>Engineering Drawing & CAD Classes</td>
<td>6</td>
</tr>
<tr>
<td>Introduction to Errors in Measurement</td>
<td>2 + 1 class</td>
</tr>
<tr>
<td>Looking to the Future - Career planning</td>
<td>1</td>
</tr>
<tr>
<td>Year 2 Options Briefing</td>
<td>1</td>
</tr>
<tr>
<td>Practical Class Meetings</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Computing</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Placements Briefing</td>
<td>1</td>
</tr>
<tr>
<td>Computing for Materials Science</td>
<td>12</td>
</tr>
</tbody>
</table>

Table of Contents
<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Science 1: Physical Foundations of Materials</td>
<td></td>
</tr>
<tr>
<td>The Study of Crystalline Materials by Diffraction</td>
<td>8</td>
</tr>
<tr>
<td>Electromagnetic Properties and Devices</td>
<td>12</td>
</tr>
<tr>
<td>Random Processes and Statistical Physics</td>
<td>8</td>
</tr>
<tr>
<td>Wave Mechanics, Quantum Theory and Bonding</td>
<td>12</td>
</tr>
<tr>
<td>Materials Science 2: Structure and Mechanical Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>Elastic Deformation</td>
<td>8</td>
</tr>
<tr>
<td>Structures of Crystalline and Glassy Materials</td>
<td>12</td>
</tr>
<tr>
<td>Defects in Crystals</td>
<td>8</td>
</tr>
<tr>
<td>Mechanical Properties</td>
<td>12</td>
</tr>
<tr>
<td>Materials Science 3: Transforming Materials</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>8</td>
</tr>
<tr>
<td>Introduction to Nanomaterials</td>
<td>8</td>
</tr>
<tr>
<td>Microstructure and Processing of Materials I</td>
<td>8</td>
</tr>
<tr>
<td>Electrochemistry</td>
<td>8</td>
</tr>
<tr>
<td>Microstructure and Processing of Materials II</td>
<td>8</td>
</tr>
<tr>
<td>Mathematics for Materials</td>
<td></td>
</tr>
<tr>
<td>Introduction to Maths & Computing for Materials Science</td>
<td>1</td>
</tr>
<tr>
<td>Ordinary & Partial Differentiation</td>
<td>7</td>
</tr>
<tr>
<td>Vectors & Matrices</td>
<td>12</td>
</tr>
<tr>
<td>Taylor Series & Limits</td>
<td>3</td>
</tr>
<tr>
<td>Integration</td>
<td>5</td>
</tr>
<tr>
<td>Complex Number</td>
<td>4</td>
</tr>
<tr>
<td>Ordinary Differential Equations</td>
<td>6</td>
</tr>
</tbody>
</table>
7.2.1 First Year Recommended Teaching Pattern

Course structure
Four compulsory written exam papers:
- Materials Science 1 – Physical Foundations of Materials
- Materials Science 2 – Structure and Mechanical Properties of Materials
- Materials Science 3 – Transforming Materials
- Mathematics for Materials Science

plus compulsory Materials coursework equivalent to one written examination paper
plus non-examined element

From Section 15: ‘Tutorials form a very important component of teaching at Oxford. Each college makes provision for its own students. College Fellows and other academic staff carry out most of this teaching themselves, usually with pairs of students but sometimes in singles or groups of three. In the first year, students have about 3 tutorials per examination paper per term, except in subjects where Departmental classes are provided.’

<table>
<thead>
<tr>
<th>YEAR 1 ‘PRELIMS’</th>
<th>Dept/ Faculty</th>
<th>College</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>Term</td>
<td>Lectures</td>
<td>Classes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1.] Materials Science 1 – Physical Foundations of Materials (40)</td>
<td>MT</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>[2.] Materials Science 2 – Structure and Mechanical Properties of Materials (40)</td>
<td>MT</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>[3.] Materials Science 3 – Transforming Materials (40)</td>
<td>MT</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>[4.] Mathematics for Materials Science (40)</td>
<td>MT</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Figures in this table are in hours unless otherwise stated.
YEAR 1	‘PRELIMS’								Dept/ Faculty	College	Comments		
Paper								Term	Lectures	Classes	Tutorials	Classes	
[5.] Coursework ‘Paper’													
(a) Crystallography	MT	9						HT	9				
(b) Computing for Materials Science	MT	6						HT	6				
(c) Practical Classes	MT	22						HT	25			Department classes hours for practicals = 3 hours per afternoon	
								TT	13				
[6.] Non-examined elements								(a) Engineering Drawing and CAD Classes	HT	6			
								(b) Introduction to Errors in Measurement	MT	2			
								HT	1				

See also [Section 15 - Teaching Norms (Expectations of Study & Student Workload)].
7.2.2 Thinking ahead to the second year

The following sets out some options for the second year that you may wish to consider. There will be a briefing session providing further information about these in Trinity Term. If you are interested in pursuing any of these options, you should discuss these with your Tutor.

Foreign Language Option:
You have the opportunity to study a foreign language in the first year of your course. You may continue this study in your second year - please see Section 9.2 for details.

Supplementary Subject:
There is also an opportunity for you to substitute the second year “Entrepreneurship and New Ventures” module with a Supplementary Subject.

The Supplementary Subjects are advertised each year and are currently:
- Quantum Chemistry: course.chem.ox.ac.uk/quantum-chemistry-mt.aspx
- History and Philosophy of Science: course.chem.ox.ac.uk/history-and-philosophy-of-science-mt.aspx
(Note that these resources may only be accessed from within the Oxford network)

Each course is taught via a programme of lectures and classes, held throughout Michaelmas Term and Hilary Term, normally examined by a 3-hour written examination paper sat at the end of Hilary Term.

7.2 The Second and Third Years

In the second year, you will study core courses, which are divided into four main subject areas: Structure and Transformation of Materials; Electronic Properties of Materials; Mechanical Properties; and Engineering Applications of Materials. Laboratory work continues in the second year (see Section 10). You can also carry out a team-based Entrepreneurship and New Ventures module.

The third year Materials lectures are offered as option courses with lectures taking place in Michaelmas and Hilary terms. Students who are following the M.Eng programme study the courses in both terms. Students normally choose 3 courses per term. The courses currently available are as follows: Advanced Engineering Alloys & Composites: Design & Application; Advanced Manufacture with Metals & Alloys: Processing, Joining and Shaping; Nanomaterials; Devices; Materials & Devices for Optics & Optoelectronics; Biomaterials and Natural Materials; Engineering Ceramics: Synthesis & Properties; Advanced Polymers; Prediction of Materials’ Properties; and Materials for Energy Production, Distribution & Storage.
At the beginning of the third year it is possible to opt to transfer to a 3 year BA (Hons) degree. A student opting to do this takes a smaller set of materials option lecture courses and carries out a literature-based research module. Further information regarding this and the structure of the second and subsequent years of the course are provided in the FHS Course Handbook and the associated lecture synopses. This option is intended for the rare case when a student may not wish to pursue the study of Materials Science for a further fourth year.

A copy of the FHS Course Handbook pertinent to your year of matriculation will be provided in your 2nd year.

In addition, you will carry out a Team Design Project in the first two weeks of Michaelmas Term, complete an Introduction to Modelling of Materials module, followed by one of two options modules, Advanced Characterisation or Atomistic Modelling, later in the year.

7.3 The Fourth Year (M.Eng)
The fourth year consists of an 8-month research project, examined by a thesis and viva.

7.4 Coursework
The assessed coursework in your first year comprises Crystallography class work, Computing for Materials Science and Practical reports. Please read the extract below taken from the Examination Regulations on the Materials Science Preliminary Examination:

“In the assessment of the Materials coursework, the Moderators shall take into consideration the requirement for a candidate to complete the coursework to a satisfactory level as defined from time to time by the Faculty of Materials and published in the Course Handbook.

Materials Science Coursework shall comprise practical work, work carried out in crystallography classes, and project work for Computing in Materials Science (CMS), as described in the Course Handbook, and it shall be assessed under the following provisions:

(a) Candidates will be required to submit the two summatively assessed Materials Practical Class reports and their Practical Class Notebook(s) to the Chair of the Moderators in the Preliminary Examination in Materials Science, c/o the Deputy Administrator (Academic) in the Department of Materials, not later than 10 a.m. on Friday of the sixth week of Trinity Full Term.

(b) The Chair of Faculty, or deputy, shall make available to the Moderators, not later than the end of the first week of Trinity Full Term, evidence showing the extent to which each candidate has completed the Crystallography coursework normally pursued during the first two terms preceding the examination.
(c) Candidates will be required to upload the CMS project via Canvas to the Prelims Assignments section of the Department of Materials Undergraduate WebLearn site not later than 12 noon on Tuesday of the fifth week of Hilary Full Term. Each submission must be accompanied by a declaration indicating that it is the candidate’s own work.

(d) **Failure of the coursework will normally constitute failure of the Preliminary Examination.** Materials Coursework cannot normally be retaken. Exceptionally a candidate who has failed the coursework may be permitted jointly by the Moderators and the candidate’s college to retake the entire academic year.”

Students continue with coursework throughout their degree (see Table 3). More details on levels of satisfactory performance may be found in Section 13.

7.5 The Lecture Timetable

The timetable of lectures each term and the general scheme of lectures for the whole year are available at www.materials.ox.ac.uk/teaching. Changes are notified to students by e-mail and on the website.

8 Teaching and Learning throughout your Degree

The 4-year Materials Science M.Eng programme is accredited by the Engineering Council at M.Eng level for the educational requirements of Chartered Engineer status. The programme comes under the auspices of the Materials Subject Benchmark Statement (QAA). It is an FHEQ level 7 qualification. The aims of the programme are shown below in Table 4.

Table 4: Educational aims of the programme

Materials Science

- to provide a course of high academic quality in Materials Science in a challenging and supportive learning environment that attracts some of the best students from the UK and elsewhere;
- to provide students with a broad, balanced knowledge of Materials Science, supported by the necessary background science;
- to develop transferable skills related to problem solving, communication, practical experimentation, and computing;
- to bring students to a position on graduation that allows them to choose confidently from many careers, whether within Materials Science or not, and enables them to contribute rapidly to their chosen employment. This includes bringing them to a position to start graduate study for a research degree at a leading university either in the UK or overseas.
8.1 Bridging Programme
You were all strongly encouraged, during the summer before you joined us, to engage with the MPLS Division’s online bridging programme (mplsbridging.conted.ox.ac.uk). This material is still available to you should you wish to refer back to it. At present it includes a Maths module, a Physics module, a Chemistry module and study skills modules.

8.2 Learning Development, Study Skills and Tutorials
As undergraduate students you are responsible for your own academic progress, and Learning Development is the gradual process by which our students become increasingly competent, independent and sophisticated in their approach to their studies. This comes from a combination of increasing experience of being responsible for your own learning, picking up ideas from fellow students, both your peers and those more senior to you, and by guidance from your college tutor. Partly the increasing sophistication is driven by the structure and content of your 4-year MEng degree programme. For example, in year 1 you begin to develop basic laboratory skills, normally in groups of three, by following straightforward 6h practicals according to written instruction sheets; in the third year you carry out a two-week full time open-ended team design project where your team is devoting around 600 person hours to a task defined only in outline in a couple of hundred words; then, in your final year you carry out a six or eight month full-time individual research project and write this up in a thesis of about ten to twelve thousand words (100 pages).

Early in Michaelmas Term, the Director of Studies and a College Tutor will run a short workshop on “Teaching, Study Skills and Learning Development in the Context of the Materials Degree Programme”.

The process of learning development is broad, ranging from the acquisition of basic study skills and knowledge to the development of high levels of academic rigour and critical ability – from the generic to the subject specific.

Your course has been designed with this in mind and will provide opportunities for you to develop a wide range of skills. Further information about these skills, together with an outline of how they are assessed, can be found in Appendix C where you will also find a summary of the intended learning outcomes for the programme.

Of all the Study Skills that you will develop, that of organizing your time (both apportioning it and using it efficiently) is one of the most important.
Initially this might be as simple as getting to a lecture on time, but very quickly, early in your first term, means thinking ahead over a period of two or more weeks to make sure that as well as attending scheduled lectures, tutorials and classes, you give appropriate time to preparation in advance of and submission of written work for: tutorials, maths classes, crystallography classes, and practical classes plus the associated lab reports. Your social life and other interests need to be factored in too. In Trinity term you will need to organize your revision for the written examination.

In your second and third year the pace and volume of all this quickens and there will be longer term objectives to factor in such as arrangements for a voluntary summer placement, writing joint reports on extended pieces of team-based coursework (and submitting them by the deadlines). Then in the final year you will apply simple project management techniques to help you make best use of the approximately fifteen hundred hours that you will devote full-time to your Part II research project.

Thus you begin simply needing to get to the next day’s lecture on time, and three years later you will start your 4th year project by mapping out what you will do over the subsequent eight months!

The on-line bridging programme includes a study skills module on time management which you may find helpful. [It is intended to add more study skills modules in the future.]

Tutorials are a key part of your programme and are compulsory. They are the responsibility of your college and you will receive guidance from your college tutor on how to make best use of this resource. Many of the tutorials are given by senior members of the Faculty of Materials but some will be given by younger staff and by research students. In small groups, typically of two or at most three students, you will discuss topics on which you have submitted written work in advance. The written work is based on question sheets issued by the course lecturers and typically you will spend 6 to 8 hours on the written work for a one-hour tutorial. Your tutors will also discuss additional topics as they judge appropriate and of course you may raise specific topics yourself. Thus the tutorial is a key resource to help you to develop an in-depth understanding of and ability to apply the material you are introduced to in lectures. The feedback you will gain during tutorials should help you to judge your progress and to identify areas of strength and weakness in your understanding. Your tutor will offer guidance on how you might improve your understanding of and insight into our subject.

Table of Contents
The University’s Education Committee summarises the purpose of tutorials as follows: “To develop an individual student’s capacity to think in depth about a subject area, and to operate with growing confidence within its techniques and methodologies, with the expectation that the process will promote increased understanding of the discipline for both tutor and student”.

This Committee also notes that “feedback should be seen as a key characteristic of tutorial teaching and a routine expectation”.

A wide range of information and training materials are available to help you develop your academic skills – including time management, research and library skills, referencing, revision skills and academic writing - through the Oxford Students website www.ox.ac.uk/students/academic/guidance/skills.

8.3 Research-Teaching Nexus

The Department of Materials has an international reputation for its research profile and this University believes that there are many benefits to the teaching of its courses that are a consequence of this high level of research activity. The tutors and lecturers with whom you will interact during this course are not only employed to teach you, but are also (in nearly all cases) actively engaged in the direction of, or participation in, one or more of the wide range of research projects that contribute to the Department’s research reputation. Many of the individual academic staff in this department are recognised internationally as leaders in their own field of specialisation.

The impact of research on teaching in this department may take many forms: tutors and lecturers including their own data or ideas from research in their teaching; the regular updating of reading lists and curricula to reflect research developments; the development of research skills and research-based approaches to study through your participation in research projects (particularly in the 4th year of your degree); special topics provided as options in year 3; the use of research equipment in practical classes; access to research seminars in the latter years of your course; opportunities to visit academic and research facilities outside Oxford; the many opportunities to meet with research students and members of the faculty, particularly at the research project stage; experience of preparing research reports including papers for external publication in some cases. In general, you will be encouraged to develop the ability to interpret and critically appraise new data, to critically appraise research literature, and to build the sense that scientific knowledge is contestable and that its interpretation may be continually revisited.

8.4 Communication Skills

Although just one part of Learning Development, communication skills are so highly valued throughout life that they deserve their own entry! From what you have read so far, you will be
aware that the different methods of teaching and assessment provide various methods for developing communication skills. As well as the immediately apparent writing skills that you develop throughout the course of the programme, tutorials develop and refine your abilities in both written and oral communication; practical classes provide opportunities for collaboration and teamwork, as well as the written report and oral marking sessions; the Business Plan and Team Design Projects have team oral presentation sessions following the team written reports, and the Y2 Poster Competition provides yet another medium to communicate your scientific understanding. Your ability to write individual reports is developed gradually; initially through lab reports, then the Y3 Modelling and Options modules and finally the Part II thesis. In Part II, you will need to report your findings to your supervisor, identify why these are useful and whether or not they support your thesis, as well as produce a substantial written thesis, defend this at an oral examination and give a research talk to your peers on your Part II work.

9 Foreign Language Study

We recognise that many students are keen to develop their language skills while reading for their Materials degree. The Language Centre (www.lang.ox.ac.uk) offers a range of courses in Arabic, Dutch, French, Georgian, German, Greek, Italian, Japanese, Mandarin, Portuguese, Russian and Spanish in a variety of formats – please see www.lang.ox.ac.uk/language-courses for details of the different courses that are offered. All courses are calibrated on the Common European Framework of Reference (CEFR) for Languages. It is possible for Materials students to develop language skills through three routes, supported by the Department of Materials:

i) Additional study in the first year - foreign language. This option does not count towards your Prelims Examination, but successful completion leads to a Certificate of Achievement from the Language Centre. The mode of study could be either Fast Track or General (but note that the General courses are typically scheduled during the day-time and hence may conflict with Departmentally-scheduled activities).

ii) 2nd year Foreign Language Option. [For this option normally language study is through your first and second years, but could be taken in the second year only, especially if you have studied a foreign language to GCSE or A-level (or equivalent).] This would involve taking one of the Fast Track options offered by the Language Centre and substitutes for the Entrepreneurship coursework; as such this counts a small amount towards your final degree result.

iii) Additional study in the fourth year - foreign language. This option does not count towards your Finals Examination, but successful completion leads to a Certificate of Achievement. The mode of study could be either Fast Track or General.
9.1 Additional Study in the First Year - Foreign Language

The Language Centre (www.lang.ox.ac.uk) offers various languages in different modes of study, giving further flexibility to your learning. There are General courses that are taught either weekly or in an intensive week in week 9 of term (note you would need to arrange accommodation with your college), with enrolment being term by term; or Fast Track courses which are fast-paced and more demanding but as such offer quicker progression in your chosen language - these courses run across all 3 terms. The Department may fund the cost for, normally, up to 10 students to attend courses. There is clear guidance on the Language Centre website about which level may be right for you, depending on any prior language study. Language courses in the first year do not contribute towards your degree but you will be awarded a Certificate of Achievement upon successful completion of this course.

It is recommended that students who wish to take the Foreign Language Option in the second year, particularly those wishing to study a language that is new to them, take a language course in their first year. This will provide a firm foundation in the language study and assist in understanding the level of commitment required to study a language for when the assessment contributes to the degree. Please understand that studying a language is not a soft option, but for those willing to make the commitment it can be enormously worthwhile.

When identifying the level and course format that is suitable to you, please bear in mind that timetabling conflicts with scheduled Materials events mean that the daytime courses are unsuitable for Materials students except for 4th years. Note too that there is an 80% attendance requirement.

If you wish to study a language, you need to discuss this with your College Tutor. The courses start in week 2 of Michaelmas Term so you need to register with the Language Centre by Wednesday of week 1. In the first year, you must pay the fees yourself but may apply for reimbursement of these costs at the end of the language course. At the time of writing this handbook, your College will reimburse half the cost and the Department the other half – you should check with your College Office in case they require you to register your intentions with them also. Reimbursement will be subject to successful completion; you are required to submit a copy of the Certificate of Achievement issued by the Language Centre together with proof of payment, so ensure you retain your receipt.

If you wish to study a foreign language in your first year, you need to complete the proforma at Appendix H. This form, countersigned by your Tutor, must be handed in to Philippa Moss, the Deputy Administrator (Academic), by Monday of week 2 in Michaelmas Term, once your registration on the course has been confirmed by the Language Centre.
9.2 Foreign Language Option in the Second Year

It is possible to study a language as the Foreign Language Option and drop the course on “Entrepreneurship and New Ventures” (taken in the second year). The Department may fund the cost for, normally, up to 10 students to attend one of the Fast Track courses offered by the Language Centre. These courses are fast paced and are intended for those who are highly motivated, can commit to regular attendance (80% requirement), are prepared to spend a substantial amount of time each week on follow-up and preparatory work, and are confident that they will not encounter workload problems later in the year. The courses consist of classes for 3 hours per week with 2 hours of independent study throughout all three terms.

There is a formal examination, normally in week 1 or Trinity Term and a presentation towards the end of Trinity Term. It is important that you are confident that you can attend the entire course as your marks will be derived from both and will contribute to Part I. Upon satisfactory completion, you will receive a Certificate of Achievement from the Language Centre. If you wish to apply for permission to transfer to the Foreign Language Option in the second year, you must complete the proforma at Appendix I. Once countersigned by your Tutor, this must be handed in to the Deputy Administrator (Academic) by the end of week 8 in Trinity Term of your first year: this allows us to liaise with the Language Centre in advance of their registration window to try to ensure a place on your chosen course.

It is also possible for students to take the 2nd year Foreign Language Option without having studied this language in the first year, normally providing you have previously studied the language to GCSE or A Level (or equivalent). In this case, it is essential that you have your tutor’s support and agreement before you enrol in any courses. The second year workload in Materials is quite demanding and taking the Foreign Language Option as part of your degree may prove challenging for some with the hours you need to devote to learning a new language.

As above, you must register with the Language Centre by Wednesday of week 1. The Department will pay the fees for the second year Foreign Language Option and you will be given a form for the Deputy Administrator (Academic) to sign to authorise this payment.

9.3 Additional study in the Fourth Year - Foreign Language

At the time of writing, if your tutor and your Part II project supervisor give their approval, it is possible to take a voluntary foreign language course in your 4th year. This option does not count towards your Finals Examination, but successful completion leads to a Certificate of Achievement. Again, as a voluntary extra, you may wish to consider which mode of learning would be right for you – General, either term by term, or Fast Track, across the entire year. The Department will reimburse 50% of the costs, subject to production of the Certificate of Achievement, and receipts.
10 \textbf{Practicals}

Set experiments are conducted in the Teaching Laboratory in the first two years. The experiments are carried out by students in small teams (normally teams of three). The first two terms sees several teams working on the same experiment in parallel, using separate sets of apparatus, with all teams completing that experiment over a two-week cycle. In the first year, these practicals typically run on Thursday and Friday afternoons. Some experiments run in Trinity term use equipment, such as electron microscopes, that is too costly to duplicate and will be carried out by the teams in series throughout weeks 1-4 of that term.

The current Practical Classes Organiser (PCO) is Prof. Sergio Lozano-Perez; he has overall responsibility for the smooth running of the practicals and for applying any penalties such as those incurred for late submission of a report. The Teaching Laboratory is open only in the afternoons.

At the start of each practical the Senior Demonstrator (SD) for that practical, who is normally a member of staff or a postdoctoral researcher, will give a briefing on the theory and practice of each experiment, safety issues, what is required in the report and the arrangements for marking. The Teaching Lab Technician (TLT) and a Teaching Assistant (TA) who is a specialist in the experiment will be present throughout the course of the practical. The SD will be present for periods throughout each experiment.

We recommend that you read through the instruction sheets in advance of the practical (they are all available on the website at \url{www.materials.ox.ac.uk/teaching/ug/ugpracticals.html}). Do make sure that by a combination of the briefing and the instruction sheets you understand what is required for each specific experiment. If you have any doubts, please ask the SD when s/he is present during the practical.

Your practical work will be assessed by your lab notebook entries and, for three practicals, by the submission of a scientific report. The first of these will be formatively assessed only. A maximum mark of 13 will be available for each of the two summatively assessed scientific reports.

Scientific reports will be required for the following practical classes:

- 1P3 Young’s Module (formative only)
- 1P6 Thermal Analysis
- 1P8 Electrode Potential of Solutions

Your laboratory notebook entries will be summatively assessed; for each of the eight practicals a maximum mark of 3 will be available for these notebook entries. An example of the marking scheme to be used in the assessment of the lab notebook entries is available at \textit{Appendix L}. Formative feedback will be provided on each summatively assessed piece of work.
You have been provided with hardback practical notebooks (hereafter referred to as the “practical book”) which you **must** use whenever you are in the lab to record your data, observations, results of any analysis, etc. Following good practice in research and industrial labs, all entries should be legible, written in pen and, if you make a mistake, just draw a line through the entry. Practical books **MUST NOT** be removed from the practical labs.

The Armourers’ and Brasiers’ Company / TATA Steel Prize is awarded annually for the best performance in first year practicals. The prize is worth £500.

10.1 Safety in the Teaching Laboratory

Every effort has been made to make the laboratory a safe place in which to work. However, you also have an obligation to help. Below is a list of ‘do-s and don't-s’ that you should follow.

DO pay attention to the Teaching Lab Technician, Teaching Assistants and Senior Demonstrators.

DO read and follow the safety instructions.

DO familiarise yourself with fire escape routes.

DO keep fire doors closed and escape routes clear.

DO sign-in / sign-out at the start / end of each day of the practical.

DO NOT remove your practical book from the lab at any time.

DO alert the teaching lab technician if you need to leave the laboratory for any reason before the end of the afternoon.

DO NOT eat, drink or put on make-up in the laboratory.

DO NOT use your mobile phone.

DO NOT mouth-pipette or lick things.

DO NOT smoke in the laboratory.

DO wear appropriate eye and hand protection.

DO wash hands after working with chemicals.

DO work in the fume cupboard with etchants and solvents.

DO use minimum quantities of flammable liquids.

DO keep the laboratory clean.

At the briefing given before each experiment the SD and/or TLT will cover safety issues specific to that experiment.

Note: it is important that the only language spoken in the Teaching Labs is English - whether that be student-to-student or demonstrator-to-student - such that if incorrect (and potentially unsafe) instructions are given, there is a better chance someone overhearing them will realise and be able to act.
10.2 First Year Practicals

First year practicals take two afternoons each to complete and are typically carried out on Thursday and Friday afternoons, with the exception of the Trinity Term experiments which require special timetabling. There is a compulsory introductory meeting on normally the Monday of the first week of each term where groups are arranged and details of the timetable explained. It is expected that you attend labs for each full afternoon the practical is scheduled and you will need to secure permission if you need to leave early. You will also be required to sign-in on arrival and sign-out on departure, for safety reasons.

N.B. You must not start an experiment without permission. In practice, this means you must not begin the experimental work before the TLT has date stamped your practical book. This requirement arises in order for the Department to comply with the Health and Safety regulations; this date stamping will take place immediately after the SD’s briefing, during which s/he and the TLT will have covered the relevant safety issues and highlighted any particular hazards. It is your responsibility to ensure that your practical book is stamped at this time. Any student starting an experiment without permission will be penalised (see Section 10.6) and will be liable to disciplinary action.

10.3 Absence from practical labs

If you miss a scheduled session in the teaching laboratory your tutor will be informed. Any student who misses a scheduled practical class must inform the TLT (Diana Passmore) of the reason as soon as possible. It is a requirement for every student to sign-in on each day of the practical that they attend and it is your responsibility to ensure you have signed-in each day. If the whole practical is missed then the Academic Administrator (Philippa Moss) must be informed. The student must provide appropriate written evidence of a valid reason for either missing the practical session or for failing to submit a report on time. Appropriate evidence includes a medical certificate to cover illness (details of the illness need not be specified by the doctor but he or she must state that in their opinion you are/were unfit to attend the practical class / write-up the report by the deadline) or a signed letter from a College Tutor to cover other circumstances. Normally no later than one week after the missed session or missed report deadline you should provide one copy of this evidence to the Academic Administrator (Philippa Moss) and one copy to the TLT (Diana Passmore). The latter copy will be passed to the PCO (Prof. Lozano-Perez). Subsequently your College will need to present this evidence in any case they might make to the Proctors in respect of missing examinable coursework.
10.4 Practical Assessment

Whilst you are working on your practicals in the teaching labs, you are expected to make entries in your practical book, capturing a brief outline of the method, recording your observations and relevant data and calculations. For each of eight experiments (1P3 to 1P10) up to three marks will be awarded for the quality of your practical book entry. In awarding these marks the Senior Demonstrator will consider all of the following:

- Presentation and completeness of results, where they’ll check you have followed the “best practice guidelines in this document (e.g. “Things to check section”) and whether you have included and correctly described all the data/results specified in the script (1 mark).
- Data analysis and errors (1 mark), where we will evaluate if the analysis of data, including error analysis, is adequate.
- Interpretation of results and conclusions (1 mark), where we will evaluate your understanding of the experiment, its results and how you summarize it all in some brief but meaningful conclusions.

The practical book MUST NOT be removed from Teaching Labs at any time. When you have finished each practical, you should present your practical book to the TLT who will stamp this at the end of your entry for that practical. The Senior Demonstrator will review the practical books before your next practical and provide a sheet with the mark and some feedback. These marks will contribute a maximum of 24 marks in total to your Prelims Examination. An example of the mark sheet may be found at Appendix L.

For three of the practicals, you are required to write a scientific report, each of which will attract a maximum of 13 marks. The first report that you write, for the 1P3: Young’s Modulus practical, will be for formative purposes only, and the mark awarded will be for feedback only and will not count towards your Prelims mark. Reports will also be required for practical 1P6: Thermal Analysis and 1P8: Electrode Potential of Solutions. For these experiments a report must be typed or word-processed and converted to a pdf file prior to submission via the assignment tools on Canvas (http://canvas.ox.ac.uk/courses/18064).

The Senior Demonstrator will mark your work, normally within two weeks of submission of the report. Your mark will be returned via the gradebook on this Canvas site and your report annotated with comments will be available for you to view.
Note: these marks will be PROVISIONAL and subject to approval by the examiners of any penalties that may have been incurred, in accordance with those defined in Section 10.6.

Whilst practicals are performed normally in threes in the laboratory, all reports and practical book entries should be completed, as far as possible, individually. You are referred to Section 14 on Plagiarism.

Completion of all introductory sessions and all eight full practicals is a requirement for the Preliminary Examination, and the marks for the practical book assessments and the two summative reports contribute to the Preliminary Examination in Materials Science. For this reason, the practical books and reports will be made available to the Moderators in the Preliminary Examination in Materials Science. You will be required to confirm not later than 10.00 am on Friday of the sixth week of Trinity Full Term that your practical work is complete.

Your attention is drawn to the strict Examination Regulations on completing the Practicals and other coursework to a satisfactory level, as explained in Section 13 of the present Handbook. You will be offered the opportunity to receive back your practical book for Prelims at the start of your second year.

10.5 Submission of reports and marking arrangements

The practical report must be typed or word-processed and submitted via Canvas within 3 weeks days of the starting date of the experiment. Each page of the report must give the page number and the total number of pages in the report, i.e. page 3 of 4. Your report must be submitted to Canvas as a pdf file by 1.00pm on the stated deadline. You can use any PDF-converter software to create a PDF. Converters include Adobe Acrobat, and a converter built into Microsoft Word 2010. If you do not have access to a converter, and are able to download and install free software, you can install a free converter called Cutepdf (see https://weblearn.ox.ac.uk/access/content/group/info/howto/Create_PDFs.pdf for information).

Your PDF “assignment filename” should be in the following format, without the square brackets: [Practical number (e.g. 1P3)] - [your first name and family name]. Care must be taken on each submission of an “assignment” (your report file) as the Senior Demonstrator will mark only this submission: you are not permitted to submit subsequently a revised version should you discover problems with the file, e.g. you omitted some relevant information, pages had been deleted, the file had become scrambled prior to submission, etc.
10.6 Penalties

The writing of reports and assessment arrangements are simple and straightforward. Unfortunately, without a sanction, a small minority of students will choose not to comply. To assist the smooth running of the Class and in fairness to other students, there is a system of penalty marks.

It is proposed that penalties may be deducted from the marks given by the Senior Demonstrator for the scientific reports, subject to approval by the Moderators. These penalties will be incurred as a result of late submission in the absence of illness or other legitimate mitigating circumstances or other non-compliance of the rules given above. Details of these penalties will be circulated once they have been approved formally by the Teaching Committee.

Cheating is a Proctorial Offence. Your practical reports are part of the University's examination system; any student caught copying another student's work will be considered by the Chair of Moderators and could be reported to the Proctors who have wide-ranging powers including the power to reduce the class of your degree. For more information on the seriousness of plagiarism, see Section 14. Note that you will need to ‘sign’ an electronic Declaration of Authorship when submitting your reports (see sample at Appendix K) and all submitted reports will be scanned by plagiarism detection software.

11 Crystallography Classes

Crystallography classes are from 9.00 am to 12 noon on select Tuesdays in both Michaelmas and Hilary Terms (see termly lecture lists for exact details). **Attendance at these classes is compulsory and will be recorded.** In addition, there will be an introductory ‘Crystal Model Make and Keep’ session in week 3 of Michaelmas Term from which, as the name suggests, you will be able to keep the crystal models to help in subsequent classes. In each of the six Crystallography classes, you are required to complete a piece of work as specified by the Senior Demonstrators. The first piece of work will be marked and you will receive feedback, but this will be for formative purposes only and will not contribute to the Preliminary Examination in Materials Science. Work from all other classes will also be marked but these marks will contribute directly to the Preliminary Examination in Materials Science. Some information on the Crystallography Class procedures is given in Appendix J.

12 Computing for Materials Science - Classes and Project

Classes in Computing for Materials Science will also be held from 9.00 to 12 noon on select Tuesdays in both Michaelmas and Hilary Terms (again, see the termly lecture lists for exact details). The vehicle for teaching will be MATLAB, however, many of the principles will be general,
and you will appreciate the relation between MATLAB and other computational approaches (C, Fortran, Python etc). Using MATLAB, these classes will provide you with the computational skills you will require to address problems you encounter in your studies. In addition, you will gain an understanding of the role computers play in Materials Science – ranging from modelling, data analysis to visualisation.

Each of the four classes will include a lecture and a series of guided problems to be tackled as a hands-on exercise. Whilst these exercises will not be marked, you will be expected to briefly discuss your findings with the Senior Demonstrator (SD) and Teaching Assistants (TA) on completion. This work will also support the requirement for an individual 1500 word report and working MATLAB script which must be submitted to the Chair of Moderators, via Canvas, not later than 12 noon on Tuesday of the fifth week of Hilary Full Term. You will be expected to invest approx. 8 hours of independent study in this project; there will be ‘surgery’ hours when the SD/TAs will be available to help with technical queries.

Attendance at these classes is compulsory and will be recorded. If you are unable to attend a class due to illness or other legitimate reason, you must provide appropriate written evidence of a valid reason for missing the class. Appropriate evidence includes a medical certificate to cover illness (details of the illness need not be specified by the doctor but he or she must state that in their opinion you are/were unfit to attend the class) or a signed letter from a College Tutor to cover other circumstances. These must be submitted to the Academic Administrator within a week of the scheduled class. It will be important that you can find the time to work through the exercise with one of the Teaching Assistants before you submit your project work.

13 **Satisfactory Performance in Coursework**

To pass the coursework ‘paper’ candidates must normally demonstrate a satisfactory performance in both the Practical Work, Crystallography Classes and the project work for the Computing in Materials Science.

For their practical coursework to be judged as satisfactory candidates must have achieved at least 40% overall on this practical coursework and have submitted a report for marking on each practical listed in the course handbook.

For their crystallography coursework to be judged as satisfactory candidates must have achieved at least 40% overall on this crystallography coursework, and have submitted a report on each of the crystallography classes.

For their CMS project work to be judged as satisfactory candidates must have achieved at least 40% on this coursework.
As indicated in the Examination Regulations for the Preliminary Examination in Materials Science (clause 2d), coursework cannot normally be retaken and failure of coursework will normally constitute failure of the Preliminary Examination. In exceptional circumstances, a student who has failed the coursework might be permitted jointly by the Moderators of the Preliminary Examination and the candidate's college to repeat all five papers of the Preliminary Examination in a subsequent year.

14 Plagiarism

Information from the University’s Proctors and Assessor on plagiarism is provided in Appendix B. This information can be applied to all aspects of assessment during the course.

15 Teaching Norms (Expectations of Study & Student Workload)

The University’s expectation is that undergraduate students treat academic study as a full-time commitment during Full Term, with approximately 40 hours per week typically being spent on academic work; this includes both scheduled contact time (tutorials, lectures, classes, practicals etc.) and time spent in private study. This is based on the expectation that these hours are spent on focussed, concentrated academic work.

It is recognised that workloads will vary week to week, and you will sometimes need or wish to work for longer. If you find it impossible to meet your academic obligations without spending significantly longer than 48 hours per week on academic study on a regular basis (rather than occasionally, or for a limited time period), you should seek advice from your tutor.

You should also note that it is an expectation of the Oxford Materials Programme that you engage in private study and/or revision during part of each vacation. You will need to do this in preparation for College collections that are held at the end of 0th week in most terms – your tutors will provide you with the specific details. During the vacations, you should go over the tutorial problems and your notes, revising the material and supplementing it with information gained from tutorials and from your own reading. In addition to consolidating the previous term’s work, there may be preparatory reading for the next term’s courses. Your tutors may also set you some specific vacation work.

Please note that the following teaching norms are for guidance only. Your college tutor will advise you more specifically on matters such as the amount of time you devote to private study and revision, and may vary the number of tutorials given on a particular lecture course based on his/her judgement of your needs. Tutorials and Maths & Materials Options Classes are nominally one
hour in length although classes may vary from 1-2 hours. Tutors may vary this to suit individual courses or needs.

15.1 Lectures & Laboratory Classes (as detailed in the General Scheme)
Lecture loads, including introductory talks, industrial talks and transferable skills workshops, are as scheduled in the General Scheme of Lectures, which can be viewed on the Oxford Materials website. For the Materials Options you will select three 12h courses per term (MT & HT of the third year). Students who have transferred to the 3 year BA (Hons) degree will take a smaller set.

Laboratory classes are scheduled for two 3h sessions per fortnight for first years (ten practicals in total) and three 3h sessions per fortnight for second year MS Part I students (12 practicals in total).

The load involved in the Foreign Language Option is described in a separate section of this handbook.

15.2 Tutorials
Tutorials form a very important component of teaching at Oxford. Each college makes provision for its own students. College Fellows and other academic staff carry out most of this teaching themselves, usually with pairs of students but sometimes in singles or groups of three.

In the first year, students have about 3 tutorials per examination paper per term, except in subjects where Departmental classes are provided.

In the second year, tutorials are assigned to different areas of the syllabus at a rate of about 1 per 4 lectures, varied as thought appropriate by individual tutors. Each tutorial requires about 6-8 hours of preparatory work by the students. Thus a typical term's lecture load of 60 hours would require 15 tutorials, involving about 105 hours preparation, or 13 hours per week. In this Department most tutors coordinate their teaching closely with the lecture programme, seeing that students complete appropriate exercises (usually question sheets devised by the course lecturers) as the lectures progress, and that any problems are cleared up promptly.

Each tutor has the flexibility to teach each group in a way to meet the needs of the individual students. There is a Tutors' Committee in the Department, which is a forum to solicit opinions, discuss common problems and coordinate actions on a termly basis. The current Chair of the Tutors' Committee is Professor Michael Moody.
15.3 Engineering Drawing & CAD Classes
There are two classes on Engineering Drawing & CAD in Hilary Term; the timing of these classes will be confirmed at a later date. Attendance at all these classes is compulsory, and will be recorded.

15.4 Maths Classes and Materials Options Classes
These classes typically involve groups of 6 to 10 students. First and second year students take Maths Classes (organised by Prof. Jonathan Yates); these are normally at the rate of one class for every two maths lectures, which is an average of about one class per week. Third year students take Materials Options classes (co-ordinated by the office of the Academic Administrator); students attend normally three hours of classes per 12h lecture course.

15.5 Other Coursework and Final Year Projects
(i) CMS project – 4x 3h classes and typically 8h independent work writing up the report and producing working script
(ii) Industrial Visits – typically 3 to 5 hours for each of four visits and 1.5 hours writing per report.
(iii) Business Plan – typically 20h writing up time for the Business Plan
(iv) Team Design Project – typically 100h for an MS student including writing the team report.
(v) Introduction to Modelling of Materials module — typically up to 100h, including writing the report(s)
(vi) Characterisation of Materials or Atomistic Modelling - typically 100h, including writing the report(s).
(vii) Literature-based research module (for 3 year BA (Hons) degree) – typically 3, and no more than 4, weeks full-time equivalent effort, including writing the essay.

15.6 Fourth year Part II Projects
Detailed guidance is issued for Materials Science students in the MS Part II Handbook (see Oxford Materials website). For the MS Research Project, typically you will spend 40h per week in the laboratory and should expect to hold regular meetings with your supervisor. These meetings will normally be held at least every two weeks for the duration of the project but significantly more intensive support is usual in the initial and final stages of the project. You are also likely to spend additional time in private study outside of the laboratory.

15.7 Revision
Revision classes are scheduled for some courses, such as the first year Maths Course (8 revision ‘lectures’). Revision tutorials are often arranged too, typically at a rate of 3 to 4 tutorials per paper.
During the formal revision periods in Trinity Term and in part of the Easter Vacation preceding the Part I Examination it is not unusual to study for 60h per week.

15.8 Paid Work Experience

Term-time employment is not permitted, except under exceptional circumstances and in consultation with your tutor and senior tutor. During vacations you will be required to complete academic work and this should take priority over other commitments. However, work experience placements may be sourced with help from the Department and the University Career’s Service. See [Section 22](#) for further details.
16 Other activities

16.1 The Industrial Tour
As mentioned previously, the JCCU arranges an industrial tour during the Easter vacation. Recent destinations have included Poland, Canada, Sweden, China, the south of France and the most recent tour was to Singapore. All of these tours were very enjoyable, as well as being extremely valuable in terms of the scientific and technical experience gained. The Department is keen to encourage further such initiatives. Suggestions should be made via the JCCU. Reports and photographs from recent industrial tours can be viewed at www.materials.ox.ac.uk/teaching/tour.html.

16.2 Industrial Visits
One industrial visit to an industrial company or research laboratory related to the materials field is arranged each term by the Industrial Visits Organiser (often, but not exclusively, on Thursday or Friday afternoon of week 5 or 6).

Students are required to attend and write reports on four industrial visits during Part I, but 1st year students may choose to attend these visits for general interest if space is available.

16.3 Summer Vacation Projects in Industry and University Research Laboratories
In addition to attending departmentally-organised industrial visits in the second and third years, all students are strongly encouraged to undertake a vacation placement in industry during their course. A short report on this (if accompanied by a letter from their line manager confirming they were employed by the particular company in question) can substitute as one of the required 4 industrial visit reports submitted during Part I.

The ideal time to undertake this summer project / placement is during the second long vacation. You should make all the arrangements yourself, usually during the course of your second year. To qualify as an industrial visit report the placement should have substantial materials content.

If you have arranged your project / placement in good time, you can apply for financial assistance from the grants made to us by the Armourers’ and Brasiers’ and Ironmongers’ Companies for travel and accommodation. All applications for financial assistance must be made through the Director of Studies; ideally, these should be made no later than the end of Hilary term. Further advice on finding a project / placement can be gained from the Director of Studies who will give a lunchtime briefing on seeking industrial projects early in Hilary Term. You must attend this talk if you wish to be considered for placement / project opportunities coordinated by the Department.
16.4 Institute of Materials, Minerals and Mining (IOM3)
IOM3 is the leading professional body for people working in the materials, minerals and mining communities. As a Materials student, you are eligible for student membership for which the Department pays. As part of the degree programme you are strongly encouraged to take up this membership. Benefits of membership include a free members’ magazine, online access to premium web content, discounts on IOM3 services, networking opportunities, professional development advice, etc. A representative from the Institute will provide further information in a briefing in Michaelmas Term.

16.5 Oxford Materials Society (OMS)
The OMS is the local regional branch of the IOM3 and organises a series of general interest evening lectures on specified Tuesdays at 6.30 pm. These lectures cover a variety of topics such as Chocolate Manufacture, Car Crash Testing, Nuclear Energy, and Forensic Science; such is the breadth and relevance of Materials Science. The meetings are open to all and they particularly encourage industrialists, researchers and undergraduate students to attend to hear the talks from experts in the field.

16.6 Student Materials Society (MatSoc)
MatSoc is a student-run society, set up in 2007 to help students studying Materials Science at Oxford. Throughout term-time MatSoc hosts a number of events including socials, lectures accompanied by complimentary buffets, and free industrial visits. Recent visits have included Element6 and the BMW Mini Factory.

17 Libraries
Do not think that a set of lecture notes for a course removes the need to consult textbooks. You will need constant access to books in the course of your studies, for clarifying points made in lectures, doing things in different ways, helping with problems and so on. The reading lists issued as part of the lecture synopses are revised regularly, and contain a range of suggestions, including alternatives and suggestions for further reading.

There are three types of library provision available to undergraduates:

- **College Libraries**, which provide books for members of the College. Most Colleges that accept undergraduates in Materials have good collections of undergraduate textbooks in the subject. If you find that a book you require is not stocked by your College library, please consult your College Tutor or College Librarian. Often the book will then be added to the library.
• The Radcliffe Science Library (RSL), which is a UK Copyright Library, with a large collection of books and journals, and extensive reading rooms. The RSL is both a lending and reference library. You need a University Card to be admitted to the RSL. Students register through their Colleges to use the RSL.

• The Departmental Library, where we aim to stock all books recommended for individual lecture courses in Materials. We also have many other textbooks, monographs, conference proceedings, key materials journals and some electronic publications. A lending service is offered to students. Further information about the library can be found on the Departmental website, at www.materials.ox.ac.uk/library/index.html. For undergraduates this library is considered to be a secondary support system to the other libraries; its purpose is not to stock multiple copies of all course books. Many of the books are kept for use in the library only so students can study in between lectures / practicals etc. The “reserve copies” of key course textbooks are kept in the Librarian’s office. THE DEPARTMENTAL LIBRARY ALSO PROVIDES A STUDY AREA AND IS EQUIPPED FOR WIRELESS INTERNET ACCESS.

18 Computing

18.1 Facilities available
The use of computers forms an important element in our degree courses. The Teaching Laboratory contains a suite of networked, PC-compatible computers and peripherals with a wide range of software, including teaching software for materials science. Most colleges provide computing facilities for undergraduates, and computing facilities are also provided centrally at IT Services (ITS).

Students are expected to access the internet frequently for communicating by email and for searching for information on the web. There is lots of useful information on the Department's website at: www.materials.ox.ac.uk and of course on Canvas https://canvas.ox.ac.uk.

The Departmental Library has facilities for online searching of the library catalogues within the University. There is also online access to databases of papers on materials science topics published in scientific journals, which are updated regularly. Papers on topics of interest can be found either in the Departmental Library or in the Radcliffe Science Library. Many journals are also available online from any computer on the University network. (www.materials.ox.ac.uk/library)
The teaching of computing is part of the undergraduate courses. An introduction is available in the first year. Some practicals have a computing element either in carrying out the experiment or in processing the results – and of course in submitting your reports.

The Department also has a Materials Modelling Laboratory with several linux HPC clusters (see mml.materials.ox.ac.uk) and the University also provides larger facilities for Advanced Research Computing (see www.arc.ox.ac.uk).

18.2 Use of the internet facilities
Access to the internet is encouraged by the university provided it is solely for legitimate academic purposes. All users of networked services should read the regulations that further define permissible use and access, which are given in full in Appendix G. Please remember that because of abuses in the past the levels of logging and auditing are now so high on most service providers that your every keystroke and action can be traced with millisecond accuracy. The penalties that are being imposed can range from fines, suspension of accounts, rustication (in the Oxford sense) to prison sentences and a criminal record. If you are the victim or target of unacceptable behaviour, contact the Senior IT Officer and prompt action will be taken to resolve the problem.

18.3 Email
All undergraduates are provided with an email address by IT Services but arranged through their colleges. Every student is allocated an oxford username consisting of 8 characters. The first four are an abbreviation of the College name, and the last four are a four digit number. The email address for the account will be easier to remember, and is usually of the form firstname.lastname@college.ox.ac.uk

The Department uses email to communicate with undergraduates about many important matters, such as industrial visits, changes in lecture venues, etc. It is therefore very important that you check your email regularly; if you don't, you might miss useful messages. In addition, if you have too many unread messages, your disk quota will be exceeded, and eventually (after 7 days) messages sent to you will bounce back. You can also use email to contact members of staff quickly (see Table 1).

18.4 Social Media
The Department recognises the benefits and opportunities that a social media presence offers for students (and staff) and realises that social media is a part of everyday life for most students. Freedom of expression and academic freedom are central beliefs of the University and it encourages its staff and students to exchange ideas and participate in discourse and debate, including in a social media context. The University is mindful that the use of social media can carry
risks and the Proctors Office has produced guidance relating to student conduct on social media, available at www.ox.ac.uk/students/life/it/socialmedia.

18.5 Programming and Computation

The Department understands that some students will have a particular desire to develop and enhance programming and computational skills during their time here. There are many opportunities available throughout the University for personal development such as via the IT Learning Programme’s classroom-based courses. An additional resource that sits alongside this is LinkedInLearning which provides a vast online library of instructional videos covering a good number of technical topics, particularly programming and web development. Login and give it a try! See Molly (help.it.ox.ac.uk/courses/molly) for full details of both areas.

Within the course programme, students will receive training in MATLAB, which is a high-performance language for technical computing. It is a tool that provides a graphical interface for numerical and symbolic computation along with a number of data analysis, simulation and acquisition functions. Following the introductory practical in the first year, you will come across problems requiring the use of MATLAB in tutorial sheets, as well as further use in lab practicals. There are also dedicated classes and associated project work for Computing in Materials Science (CMS), through which you will learn the computational skills you will require to address problems you encounter in your studies and, in addition, you will gain an understanding of the role computers play in Materials Science – ranging from modelling, data analysis to visualisation. Whilst the vehicle for this teaching will be MATLAB, many of the principles will be general, and you will come to appreciate the relation between MATLAB and other computational approaches (C, Fortran, python etc). At the start of the Part II project, a workshop is delivered providing exposure to the more advanced type of problems that students may encounter in their projects.

19 Important dates and deadlines

A list of important dates and deadlines is provided at the front of this handbook. The information is based on the current regulations, and details may vary. The start dates for examinations are provisional.

20 Examinations (for students embarking on the “Prelims” programme in October 2019)

Your attention is drawn to the statement on plagiarism in Appendix B.

Information on (a) the standards of conduct expected in examinations and (b) what to do if you would like examiners to be aware of any factors that may have affected your performance before
or during an examination (such as illness, accident or bereavement) are available on the Oxford Students website (www.ox.ac.uk/students/academic/exams/guidance).

During your four-year course, there are 3 sets of examinations. The Preliminary Examinations (‘Prelims’) are at the end of the first year and the Final Examinations are in two parts: Part I at the end of the third year and Part II at the end of the fourth year. You must pass Prelims before you can start the second year, but the result does not count towards your degree classification. Candidates who get particularly good results in Prelims are awarded a distinction. Normally, you must achieve an overall mark at Part I of at least 50% if you are to progress to Part II.

The degree classification is based on the combined results of Part I and Part II. The Examination Conventions for Prelims 2018-19 can be found in Appendix F. The Examination Conventions for 2019-20 will be based on these documents but may not be identical. They will be issued to you in Hilary Term and provide the framework under which the examiners or moderators act. Examination conventions are the formal record of the specific assessment standards for the course or courses to which they apply. They set out how your examined work will be marked and how the resulting marks will be used to arrive at a final result. They include information on: marking scales, marking and classification criteria, scaling of marks, progression, resits, use of viva voce examinations, penalties for late submission, and penalties for over-length of work. Past reports of the examiners can be found via Canvas (https://canvas.ox.ac.uk/courses/13922).

20.1 Preliminary Examination

The Prelims examination comprises four written examination papers, and continuously assessed work for the first year practicals, crystallography classes and project work in Computing for Materials Science (CMS). The continually assessed work counts as the equivalent of a fifth paper and the five papers are weighted equally. The four written examination papers are Materials Science 1-3 and Mathematics for Materials Science.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prelims</td>
<td></td>
</tr>
<tr>
<td>Materials Science 1</td>
<td>100</td>
</tr>
<tr>
<td>Materials Science 2</td>
<td>100</td>
</tr>
<tr>
<td>Materials Science 3</td>
<td>100</td>
</tr>
<tr>
<td>Mathematics for Materials Science</td>
<td>100</td>
</tr>
<tr>
<td>Practical Classes</td>
<td>50</td>
</tr>
<tr>
<td>Crystallography</td>
<td>25</td>
</tr>
<tr>
<td>Computing for Materials Science</td>
<td>25</td>
</tr>
<tr>
<td>Overall Total</td>
<td>500</td>
</tr>
</tbody>
</table>
All four written examination papers must be passed, but candidates who fail one or more written papers may retake them at the end of the summer. Prelims examination marks conform to the University’s standardised expression of agreed marks for Preliminary examinations.

The pass mark is normally 40%, with the possibility that failure in one of the four written papers by a small margin can be compensated if the overall performance merits it. Failure of the fifth paper (continually assessed coursework) normally will constitute failure of the Prelims examination. Materials coursework normally cannot be retaken. Exceptionally a candidate who has failed the coursework may be permitted jointly by the Moderators and the candidate’s college to retake the entire academic year. Coursework must be passed to a satisfactory level (see Section 13).

Distinctions are awarded at the discretion of the moderators for excellent performance (this is normally for a mark equivalent roughly to a First Class but the moderators determine the requirement for an award of distinction each year and the parameters will be communicated by your tutor with the results).
You will be able to access your own results via the Student Self Service portal approximately 2 weeks after the end of Trinity Full Term (subject to change). The Academic and Assessment Results page within Self Service details all your assessment results (examination papers and/or submissions) and the result of the year (if applicable) together with your ranking position. You will need your Single Sign-On ID and password to access Student Self Service.

20.2 Calculators and SMP tables in examinations
In Prelims, and Part I, the only types of calculators that may be used in examinations are from the following series:
 CASIO fx-83
 CASIO fx-85
 SHARP EL-531
Candidates are not permitted calculators in the Mathematics for Materials Science examination. SMP tables are provided in all Preliminary examinations.

20.3 Examiners
The examiners for Prelims (known as Moderators) are appointed on an annual basis and are distinct from those that examine Parts I and II in the Final Honours School. The Moderators in the Department of Materials for 2019-20 are as follows:
Professor David Armstrong, Professor Lapo Bogani, Professor Jan Czernuszka (Chair) and Professor Michael Moody.

It must be stressed that in order to preserve the independence of the moderators, you are not allowed to make contact directly about matters relating to the content of the exams or the marking of papers. Any communication must be via the Senior Tutor of your college, who will, if he or she deems the matter of importance, contact the Proctors. The Proctors in turn communicate with the Chairman of Moderators. If you have any queries about the Examinations or anything related to the Examinations, for example, illness, personal issues, please don't hesitate to seek further advice from your College tutor, or one of the Department’s academic support staff.

20.4 Entry for University examinations and examination dates
Instructions for entering for University examinations and examination timetables can be found via www.ox.ac.uk/students/exams/.

20.5 Preparing for examinations
It is quite normal for students to feel anxious in the run-up to examinations. Developing a strategic approach can help you to take and maintain control of your preparation. The Oxford University Student Union provides some helpful advice on their website at
and the Department provides you with a guidance
pamphlet entitled “Preparing for Examinations” (available on the Materials website at
https://www.materials.ox.ac.uk/files/preparingforexaminations2018-19pdf). Your College Tutor will
be able to offer advice specifically suited to you based on their knowledge of your strengths and
weaknesses. Past exam papers are available online through OXAM at
https://weblearn.ox.ac.uk/portal/hierarchy/oxam (you will need to sign in using your Single Sign-
On).

20.6 Collections
Collections are examinations sat in Colleges during 0th week at the start of term. The Department
of Materials uses centrally set Collections, so that all students in the same year sit the same paper.
Collections questions are often drawn from past Prelims exam papers and your own reflection on
your performance in ‘Collections’ together with the feedback from your tutor on this performance
should help you to understand what is required for a first-class answer to an exam question.

21 Student prizes
The Department has a large number and variety of prizes available to students in all years of their
degree.

Johnson–Matthey Prize for best overall performance in Prelims - £1,000
Armourers’ and Brasiers’ Company / Rolls Royce prize for outstanding overall performance in
Prelims (awarded to the students with the 2nd and 3rd highest marks) - total prize £400
Armourers’ and Brasiers’ Company / TATA Steel Prize for the best overall performance in
Prelims practicals - £500
TATA Steel Prize for best overall performance in Part I practicals - £250
Armourers’ and Brasiers’ Company / TATA Steel Prize for the best Team Design Project -
£1,000
Gibbs Prize for best overall performance in MS Part I - £190
Worshipful Company of Ironmongers Prize for best MS Part II presentation - £450 and a medal
Armourers’ and Brasiers’ Prize and Armourers’ Medal for the best MS Part II project - £250
and a medal
Institute of Materials, Minerals and Mining Prize for best overall performance in Parts I and II -
£100
Department of Materials’ Annual Prize for the most significant improvement between Part I and
Part II - £100

22 Careers and Vacation jobs
The careers taken up by our graduates are of almost bewildering variety! Three broad groupings
can be identified: approximately one third go directly into scientific or technology-related
Another third go on to some form of further postgraduate education or training either in the UK or abroad; and the final third pursue careers which have less direct links to Materials Science (although a number of people in this last group discover that their knowledge of materials science is useful, e.g. in technical finance and investment, patent law, and accountancy in industry).

It is a very good idea to work in industry during one or more long vacations, and if possible to obtain industrial sponsorship whilst at University. Employers are becoming increasingly distrustful of the traditional 'milkround' interview approach to recruitment, and are correspondingly more likely to recruit from the ranks of those who have already spent time working for their organisations. The ability to work in a team, to communicate well, to show initiative, and to get a task completed well and on time, are all qualities vital to the employer, and can best be assessed on the basis of experience, rather than under the artificial conditions of an interview.

Advice about vacation industrial placements, research projects and jobs for graduates can be obtained from a variety of sources. The University Careers Service (56 Banbury Road, www.careers.ox.ac.uk/) has outstanding resources, and provides an excellent service. Dr Adrian Taylor gives a briefing early in Hilary Term for all students who are interested in vacation placements and summer research projects. Normally, several research project opportunities are available overseas, including China and the USA. There is also a notice board, just outside the Library in the Hume-Rothery Building, which is used to display current information about job opportunities and vacation attachments. Tutors should also be consulted. They receive a lot of information from potential employers, and may also be in touch with previous graduates who are working in industry. Many of them also have direct links with particular industrial companies, and a personal recommendation always helps!

The Oxford University Careers Service has a number of programmes and workshops that provide opportunities to develop skills and experience for your career. There is also a Skills Hub available via WebLearn at https://weblearn.ox.ac.uk/portal/hierarchy/skills.
23 If you need help

23.1 Asking for assistance

This section could be sub-titled ‘What to do if things go wrong’. The first thing to recognise is that it is not unusual for students to experience a difficulty of one kind or another. Some aspect of the course might be horribly difficult to understand; a personal relationship might break down; a health problem might arise; or domestic or financial difficulties might crop up. Such difficulties may give rise to feelings of inadequacy, compounded by the impression that everyone else is coping better. What is the best way to deal with such difficulties?

There are perhaps three main aspects to this:

As far as possible, be prepared. Expect the unexpected. From the start of the first term of the first year, work systematically and regularly on your studies, and don't rely on 'last minute panics' to get you out of difficulties. Take the time and effort to cultivate good friends, whom you will be able to turn to in times of trouble. And don't forget the basics of regular meals, some form of physical exercise, and enough sleep. In engineering terms, this amounts to building a margin of safety into your design for living, so that when extra stress is applied at some point, the whole structure does not immediately collapse in a heap!

Be positive. Try to remind yourself that you are not the only person in this position. Learning to cope, and learning how and where to seek help when you need it, is part of the natural preparation for your future, and part of your progress towards personal maturity.

Be proactive in seeking help. Go and talk to somebody. It is very common to feel that nobody can help you with your particular insurmountable difficulty. In fact, the opposite is the case, and there are a lot of people ready to assist you. Every college has its own systems of support for students - please refer to your College handbook or website for more information on who to contact and what support is available through your College. Usually the best advice (but sometimes a difficult step to take) is to go and talk to your Tutor. If you feel that you cannot do that, then at college level, you can go to your College Adviser (if one has been appointed), or to a College Counsellor, or one of your College Officers with particular responsibility for looking after students e.g. the College Doctor, Dean, Chaplain, Senior Tutor or Head of House. At the Departmental level, you can consult any member of staff, and in particular, the Director of Studies, Dr Adrian Taylor; the Academic Administrator, Philippa Moss; the Heads of Department, Professor Peter Nellist and Angus Wilkinson; or one of the Harassment Advisers (Miki Bennett, Professor Hazel Assender and Professor Jan Czernuszka).
Or you might find it easier to talk to an older student or a postgraduate in your college, who may have experienced similar problems. Your JCR should also have a Welfare Representative who may be able to help.

Further details about support available through the University may be found on the Oxford Students website at www.ox.ac.uk/students/welfare/. In addition, there are several organisations that exist to help you, including:

- The University Counselling Service, 3 Worcester Street (appointments may be made by telephoning 70300 from within the university or 270300 from outside, or by email: counselling@admin.ox.ac.uk).
- The Oxford Student Mental Health Network (www.osmhn.org.uk)
- Nightline - a student-run counselling service (oxfordnightline.org), Oxford 270270, 16 Wellington Square, term time, 8 p.m. to 8 a.m.).
- Student Advice Service, a confidential service offered by the Oxford University Student Union. For further details, refer to the Oxford SU website at www.oxfordsu.org/wellbeing/student-advice.
- Oxford Student Alcohol and Drugs Advice: this is a counselling service coordinated by the Student Advice Service (same details as above).
- The Samaritans (116 123 or Oxford 722122 24 hours), who can provide counselling, as well as an emergency service for the suicidal and despairing. For further details, refer to the Samaritans Oxford website at www.samaritans.org/branches/oxford-samaritans.
- The Libra Project (Oxford 723500) has been set up by a voluntary organisation to provide free counselling and advice for anyone worried about their drinking, or any drugs they may be taking.
- University Harassment Line (70760 from within the university or 270760 from outside, email: harassment.line@admin.ox.ac.uk).
- University Equality and Diversity Unit (89830 from within the university or 289830 from outside; www.admin.ox.ac.uk/eop/).
- The Sexual Harassment and Violence Support Service - offers free confidential support and advice to all students. This service is delivered by Student Welfare and Support Services (SWSS) and was set up in collaboration with Oxfordshire Sexual Abuse & Rape Crisis Centre, and works closely with the University’s wider welfare community. Contact supportservice@admin.ox.ac.uk for confidential advice. For further information, see the Oxford Against Sexual Violence page on the University website.
23.2 Special Needs

Specialist advice and assistance is available for dyslexic, blind/partially sighted, and other disabled students from the University Disability Office (www.ox.ac.uk/students/welfare/disability or disability@admin.ox.ac.uk or 01865 (2)80459).

If you experience difficulties with your course because of a disability then you should discuss this with your college tutors. Some colleges have a specific member of staff who assists students with welfare difficulties. Alternatively – or as well - contact the Academic Administrator, Ms Philippa Moss, who is the Disability Contact for undergraduates within the Department and is well-placed to ensure your requirements for support on the course are met.

24 Complaints and Appeals

The University has procedures for students should they believe a formal complaint or appeal is required. The details (in Appendix A) outline the procedures for this within the Department of Materials. Before embarking on any formal procedure, you are advised to approach a relevant senior figure with your concern and discuss it informally as soon as you think there is a problem.

25 Policies and Regulations

The University has a wide range of policies and regulations that apply to students. These are easily accessible through the A-Z of University regulations, codes of conduct and policies available on the Oxford Students website www.ox.ac.uk/students/academic/regulations/a-z.
Appendix A The University’s Complaints and Appeals Procedures

Complaints and academic appeals within the Department of Materials
The University, the MPLS Division and the Materials department all hope that provision made for students at all stages of their course of study will make the need for complaints (about that provision) or appeals (against the outcomes of any form of assessment) infrequent.

When such a need arises, an informal discussion with the person immediately responsible for the issue that you wish to complain about (and who may not be one of the individuals identified below) is often the simplest way to achieve a satisfactory resolution.

Many sources of advice are available from colleges, faculties/departments and bodies like the Counselling Service or the Oxford SU Student Advice Service, which have extensive experience in advising students. You may wish to take advice from one of these sources before pursuing your complaint.

General areas of concern about provision affecting students as a whole should be raised through Joint Consultative Committees or via student representation on the faculty/department’s committees.

Complaints
If your concern or complaint relates to teaching or other provision made by the faculty/department, then you should raise it with the Director of Studies, Dr Adrian Taylor. Complaints about departmental facilities should be made to the Head of Admin and Finance, Dr Charlotte Sweeney. If you feel unable to approach one of those individuals, you may contact the Head of Department, Professor Patrick Grant. The officer concerned will attempt to resolve your concern/complaint informally.

If you are dissatisfied with the outcome, then you may take your concern further by making a formal complaint to the Proctors under the University Student Complaints Procedure (www.ox.ac.uk/students/academic/complaints).

If your concern or complaint relates to teaching or other provision made by your college, you should raise it either with your tutor or with one of the college officers, Senior Tutor, Tutor for Graduates (as appropriate). Your college will also be able to explain how to take your complaint further if you are dissatisfied with the outcome of its consideration.
Academic appeals

An academic appeal is an appeal against the decision of an academic body (e.g. boards of examiners, transfer and confirmation decisions, etc.), on grounds such as procedural error or evidence of bias. There is no right of appeal against academic judgement.

If you have any concerns about your assessment process or outcome it is advisable to discuss these first informally with your subject or college tutor, Senior Tutor, course director, director of studies, supervisor or college or departmental administrator as appropriate. They will be able to explain the assessment process that was undertaken and may be able to address your concerns. Queries must not be raised directly with the examiners. If you still have concerns you can make a formal appeal to the Proctors who will consider appeals under the University Academic Appeals Procedure (www.ox.ac.uk/students/academic/complaints).
Appendix B Plagiarism

This information can be applied to all aspects of assessment during the course.

In their Disciplinary Regulations for University Examinations, the University’s Proctors and Assessor draw attention to two extremely important disciplinary regulations for all students.

“3
No candidate shall cheat or act dishonestly, or attempt to do so, in any way, whether before, during or after an examination, so as to obtain or seek to obtain an unfair advantage in an examination.

4 No candidate shall plagiarise by presenting someone else’s work as their own, or by incorporating other people’s work or ideas into their own work without full acknowledgement. This includes: verbatim quotation, cutting and pasting from the internet, and paraphrasing without clear acknowledgement; collusion; inaccurate citation; failure to acknowledge assistance; use of material written by professional agencies or other persons; and autoplagiarism.”

All undergraduate and graduate students must carefully read regulations 3 and 4 in the Proctors’ Disciplinary Regulations for University Examinations. These make it clear that you must always indicate to the examiners when you have drawn on the work of others; other people’s original ideas and methods should be clearly distinguished from your own, and other people’s words, illustrations, diagrams etc. should be clearly indicated regardless of whether they are copied exactly, paraphrased, or adapted. Failure to acknowledge your sources by clear citation and referencing constitutes plagiarism. The University reserves the right to use software applications to screen any individual’s submitted work for matches either to published sources or to other submitted work. Any matches might indicate either plagiarism or collusion. Although the use of electronic resources by students in their academic work is encouraged, you should remember that the regulations on plagiarism apply to on-line material and other digital material just as much as to printed material.

…Where plagiarism is proven, it will be dealt with severely: in the most extreme cases, this can result in the student’s career at Oxford being ended by expulsion from the University.”

(The University Student Handbook Section 7.8; available at www.ox.ac.uk/students/academic/student-handbook)
The University definition of plagiarism is:

Plagiarism is presenting someone else's work or ideas as your own, with or without their consent, by incorporating it into your work without full acknowledgement. All published and unpublished material, whether in manuscript, printed or electronic form, is covered under this definition.

Plagiarism may be intentional or reckless, or unintentional. Under the regulations for examinations, intentional or reckless plagiarism is a disciplinary offence.

Useful information on plagiarism can be found on the Study skills and training pages at www.ox.ac.uk/students/academic/guidance/skills

You are strongly advised to complete the course: https://weblearn.ox.ac.uk/portal/hierarchy/skills/generic/avoidplag.

(You will be required to complete this before you start your Part I Project.)

Some Brief Guidance

Text

Take care when referring to the work of others. Not only are published words subject to plagiarism, but ideas and opinions can be plagiarised too. You should not allow the opinions and conclusions of others to appear to be your own or confused with your own criticism.

"The peak-aging time of Al-4wt.%Cu, aged at 463 K, was not altered by the addition of 20 wt.%SiCp. The particle size of the reinforcement and the matrix to reinforcement particle-size ratio did not affect the peak-aging time. This implies that, on a bulk scale, aging is not affected by the spatial distribution of the reinforcement, although it is likely to be affected locally."

Here is one example of the use of this extract:

Stone and Tsakiropoulos studied the aging of metal matrix composites based on Al-4wt%Cu containing 20wt% SiC particles [Stone & Tsakiropoulos, 1994]. The peak-aging time of Al-4wt.%Cu, aged at 463 K, was not altered by the addition of 20 wt.%SiCp. The particle size of the reinforcement and the matrix to reinforcement particle-size ratio did not affect the peak-aging time. This implies that, on a bulk scale, aging is not affected by the spatial distribution of the reinforcement, although it is likely to be affected locally.
The first sentence is fine and is properly referenced. However, the rest is plagiarised because (i) it is directly copied from the original without being identified as a quote and (ii) the author has not attributed the opinion in the fourth sentence to the original authors.

A second example:

Stone and Tsakiropoulos studied the aging of metal matrix composites based on Al-4wt%Cu containing 20wt% SiC particles [Stone & Tsakiropoulos, 1994]. They showed that the addition of the reinforcing particles had no effect on the time for peak aging of the matrix at 463K. The implication of this is that whilst aging is likely to be affected locally by the dispersion of the particles, it is not affected macroscopically by the spatial distribution of the reinforcement.

This example is an improvement because the second sentence is now attributed to the original authors. The opinion in the final sentence is still plagiarised. This final sentence could be improved by

The authors concluded that the implication of this is that whilst aging is likely to be affected locally by the dispersion of the particles, it is not affected macroscopically by the spatial distribution of the reinforcement. This is a sensible conclusion.

because whilst the new author agrees with the original opinion/conclusion they have not passed it off as their own. A belt and braces approach might be:

The authors concluded, “This implies that, on a bulk scale, aging is not affected by the spatial distribution of the reinforcement, although it is likely to be affected locally” [Stone & Tsakiropoulos, 1994]. This is a sensible conclusion.

Quite often you will not be simply referring to a single piece of published work, but comparing & contrasting several reports of relevance to a particular point in your own document and then offering your own considered opinion on this previous work and/or comparing it with your own data and conclusions.
The principles illustrated above in respect of Stone & Tsakiropoulos of course still apply to this more complicated case and in addition it is necessary to separately identify each contribution, for example:

It has been reported by two groups that the time for peak aging of the matrix at aging temperatures in the range 460-475K is not affected by the addition of reinforcing particles [Stone & Tsakiropoulos (1994), Bloggs & Jones (1997)]. Although a more recent study did observe an apparent influence of the reinforcing particles [Smith (2006)], in the present work we have been unable to reproduce this effect, our data being fully consistent with the original work of Stone & Tsakiropoulos. It seems likely that the results reported by Smith were an artefact of the analytical method that they adopted, such artefacts having been observed by others in related studies of a series of Al-Cu-Mg alloys [Jones et al (1999)].

Figures
Figures too are a potential source of plagiarism. If you use somebody else’s diagram, graph, photograph or other artwork without acknowledging the original source then you are guilty of plagiarism (and possibly also of breach of copyright). If you use a figure from elsewhere then you should cite the original reference in the figure caption and in the associated body text. Even if you redraw a figure then you should still refer to the original source, e.g. [redrawn from Jones et al, 2006]. If you use a collection of data from other works to create a completely new figure (e.g. a graph to show a trend arising from a collection of data from several sources) then you must acknowledge the original data sources.

Why is referencing important?
Quite apart from the need to avoid plagiarism because of the danger that this may invalidate a piece of assessed work and/or lead to some other penalty, there are a number of other good reasons for the internationally accepted practise of using references in a factual document:

(i) It is a simple professional courtesy to a fellow scientist who has laboured long & hard to generate the work that you are referring to.

(ii) It enables the reader to verify the statements that you are making, to make his/her own judgements on both the conclusions that you report from the referenced work and the judgements that you make on this work, and of course to learn more about the detail of the original work.
(iii) Your work is strengthened by its reference to respected authorities in a given field; as scientists we all build our work ‘on the shoulders of giants’.

(iv) It enables the reader to identify very clearly what are your own original contributions to the matters discussed. Since these contributions will undoubtedly be erudite and valuable, you will want the world to know that they are yours and to be able to give you credit for them when your work is referenced in the future!

The two main referencing systems are Harvard (author name, year of publication) and Vancouver (numbered sequentially in order of use). Whichever system you decide to use, good practice dictates that references should include (depending on publication type): authors, title of book or article, title of journal or other work, name of conference, place of publication, date of publication, publisher and page numbers. The conventions for citing internet resources include URL and date accessed. A useful style guide can be found at authorservices.wiley.com. Your tutor will be able to provide further guidance.

Other useful information on plagiarism can be found on the Study skills and training pages at www.ox.ac.uk/students/academic/guidance/skills
Appendix C Learning Development (Skills and Outcomes)

Skills that the Materials degree programme enables a proactive and fully-engaged student to develop:

<table>
<thead>
<tr>
<th>Intellectual Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Appreciation of the underlying principles of Materials Science, supported by an</td>
</tr>
<tr>
<td>understanding of the necessary basic science required in studying this interdisciplinary</td>
</tr>
<tr>
<td>subject.</td>
</tr>
<tr>
<td>2. An understanding of the processes, and principles involved, that lead to the</td>
</tr>
<tr>
<td>appropriate application of materials, the importance of materials to industry and society</td>
</tr>
<tr>
<td>as well as an awareness of sustainability, environmental issues and safety.</td>
</tr>
<tr>
<td>3. An understanding of engineering principles in order to understand the manufacturing</td>
</tr>
<tr>
<td>methods and service performance of materials.</td>
</tr>
<tr>
<td>4. Ability to apply appropriate mathematical or numerical techniques to materials-based</td>
</tr>
<tr>
<td>phenomena.</td>
</tr>
<tr>
<td>5. Ability to conduct a logical discussion and argue a coherent point of view.</td>
</tr>
<tr>
<td>6. Ability to solve a range of known problems and tackle unseen and more open-ended</td>
</tr>
<tr>
<td>ones.</td>
</tr>
<tr>
<td>7. Ability to collate, analyse and interpret complex experimental data and infer</td>
</tr>
<tr>
<td>conclusions where appropriate.</td>
</tr>
<tr>
<td>8. Ability to summarise scientific arguments and facts and to give succinct oral and</td>
</tr>
<tr>
<td>written presentations, using IT-based methods where appropriate.</td>
</tr>
<tr>
<td>9. Ability to search for, summarise and critique information in the scientific &</td>
</tr>
<tr>
<td>engineering literature.</td>
</tr>
</tbody>
</table>

Teaching/learning methods and strategies

The programme is designed so that lectures, tutorials, industrial visits, coursework, projects, classes, self-study and practicals (both in the classroom and independent projects) complement each other to allow the student to develop the above intellectual skills.

Assessment

Skills 1-6 are summatively assessed through written examinations, written coursework assignments and project work. These skills are also assessed formatively through tutorials, which provide regular feedback on the student’s progress. Skills 6-9 are assessed through practicals, project reports and public presentations. For students following the BA in Materials Science programme, ‘project work’ includes the extended essay.
Practical Skills

1. Awareness of the need for safety in practical laboratories, and the importance of good laboratory practice including the use of a laboratory notebook.
2. Ability to use a wide range of experimental techniques to make quantitative measurements, and to be able to draw scientifically rigorous conclusions from these observations.
3. Ability to plan, execute and write up both short projects, and long open-ended projects.
4. Awareness of the applications of practical Materials Science.
5. Basic knowledge of safe workshop practice and development of basic workshop skills.

Teaching/learning methods and strategies
These skills are developed through (i) the practical courses, undertaken in the 1st and 2nd year of the programme in the Departments’ teaching laboratories, (ii) observations made during industrial visits, (iii) open-ended mini-projects in the 3rd year, and (iv) the full-time, eight-month final year research project.

The teaching laboratory has an academic supervisor (The Practical Courses Organiser) and a Teaching Lab Technician, as well as a team of demonstrators and teaching assistants to guide the students through their practicals. Practicals are undertaken as a cohort, normally in groups of three, and are scheduled throughout the academic year in order to support the lecture courses.

The students undertake four industrial visits during the 2nd and 3rd years of the programme and, in the 3rd year of the programme, a team design project (TDP), an introduction to modelling of materials module and either a materials characterisation or atomistic modelling module. The TDP teams comprise 5-8 students and the mini-projects in the characterisation and modelling modules take the form of individually written-up open-ended practical or computational modelling work.

The 4th year consists of a full-time independent research project, undertaken in the University, overseas or in industry.

Assessment
The teaching laboratory practicals are continually assessed and contribute to both the Preliminary examination and the Part I examination. Three of eight Prelims practicals are written up by each student as ‘Acta Materialia’ style papers which are marked by the member of academic staff in charge of the practical. The first of these is marked formatively only. Three of twelve Part I practicals are written up as ‘Acta Materialia’ style papers which are summatively marked by the member of academic staff in charge of the practical and one is ‘written up’ in the form of an A0 poster. The three co-authors of the best poster in a cohort receive a prize and the student groups provide peer-feedback to each other on the strengths &
weaknesses of their posters. In addition, the member of staff in charge of the practical provides written or face-to-face formative feedback on the ‘Acta’ style practical reports. Summative marks and formative feedback are also given for the student’s use of their laboratory notebook for all twenty practicals.

The industrial visit reports are also continually assessed and contribute towards the Part I examination.

The 3rd year team design project is assessed both by written and oral presentations. The 3rd year introduction to modelling and characterisation/modelling mini-projects are assessed by means of a written report. All 3rd year projects contribute towards the Part I examination.

Marks for the final year project (Part II) are awarded for the standard of the project based on the evidence of the thesis (max 12,000 words) and discussions in a viva voce examination.
Appendix D Intended Learning Outcomes

Students will be enabled to develop a knowledge and understanding of:

- The general theoretical and experimental principles and techniques of physics, chemistry and engineering in a Materials Science context;
- A broad range of Materials Science topics;
- How the subject is applied in an industrial context, and the different problems associated with the business world;
- The application of relevant mathematical techniques;
- Sound experimental protocol, including laboratory safety, data handling and analysis, and communication of scientific results and conclusions;
- Independent research skills, integrity in research, and project management;
- Sustainability, environmental impact and ethics;
- Basic IT skills, including information searching, and numerical methods as applied to Materials Science;
- How to work as part of a team.

Related teaching/learning methods and strategies

- Lectures form the principle means by which the core content of the course is delivered to the students. A guided reading list and course handbooks containing synopses of the lectures supplement the lecture course and where appropriate notes and proofs of the lectures are also provided. Problem sheets are issued by the lecturers and assistance with and feedback on the solutions is provided during tutorials.

- Practicals (usually in pairs or threes) supplement and expand the lectures, they allow the students to develop key experimental skills and visibly demonstrate the principles discussed in lectures and tutorials.

- Tutorials (usually in pairs or threes) are used to address the more complex concerns as a means to stretch the more able students and provide focussed help for those students experiencing difficulties.

- Classes (small groups) are used in certain subject areas to discuss and answer problem sets related to the material delivered in lectures.

- Computing techniques are developed from the 1st year and students are taught how they may be applied to Materials Science problems. A wide range of software is used. In the Computing for Materials Science classes, following a series of lectures and training
exercises each student works alone a mini-project to produce a short report and working script.

- Industrial visits are undertaken once a term to allow the students to see how Materials Science is applied in industry. The visits are designed to complement the formal academic syllabus of the course and form a mandatory part of the course. Students must attend and submit a report on at least four visits. There is also a voluntary industrial tour during the Easter Vacation, although places are restricted to about 20 students.

- Industrial Lectures are organised each year. These are given by employees of companies that make use of Materials Science and aim to reinforce students' awareness of some of the applications of Materials Science and to raise awareness of career opportunities.

- Engineering and Society coursework is used to broaden the student's view of materials engineering within the commercial world. The coursework is currently based round “Entrepreneurship and New Ventures”, and involves the students writing a business plan in teams. The teams also give an oral presentation on their business plan.

- Voluntary Industrial/Research Laboratory vacation projects: students are strongly encouraged to undertake vacation replacement in a relevant company/institution. Students are offered guidance on how to find such a placement.

- Team design projects undertaken in the penultimate year of the course are designed to develop the students' design skills, the benefit of good teamwork and other key transferrable skills, including written and oral presentations. The projects require not only design and materials input but also costing and market analysis.

- Open-ended practical work is undertaken in the penultimate year of the programme, in an Introduction to Modelling of Materials and then in either Atomistic Modelling or Materials Characterisation. Following a series of lectures and training exercises each student works alone on one or two mini-projects. In addition to increasing their knowledge of modelling or characterisation the mini-projects also introduce the students to working independently on an open-ended task in advance of the major research project which they undertake the following year.

- Independent research teaches the student how to plan, execute and write up a challenging open-ended 36-week full-time project, under the supervision of a Faculty member. Oral presentation skills are further developed in the delivery of a research talk to the Faculty.
Students who opt to transfer to the 3-year BA in Materials Science substitute this research project with literature-based research leading to submission of an extended essay on a topic in Materials Science.

- Private study during term time and vacation is both necessary and expected, as it provides opportunities for consolidation and reading beyond the syllabus.

Assessment

The assessment procedure for Materials Science is divided into two public (University) examinations: the Preliminary and Final Examinations, with the latter being further divided into the Part I and Part II assessments. A wide range of assessment methods, both summative and formative, is employed throughout the degree programme.

- The Preliminary Examination in Materials Science is a pass/fail examination (although distinctions are awarded for excellent performance) consisting of four written papers, and continually assessed work from the first year practicals and crystallography classes, which together count as a fifth paper. It must be passed (a resit is allowed in September) to proceed further on the course. The marks do not count towards the degree classification.

- The Part I of the Final Examination consists of four written general papers and two option papers, taken at the end of the students’ 3rd year. Additionally the marks for practicals, industrial visits, the Engineering and Society coursework (currently a business plan), the team design project, the materials modelling module and the atomistic modelling or characterisation module contribute the equivalent of a further 2 papers. A foreign language option (initiated in the 1st year) or a supplementary subject (taken in the 2nd year) may be substituted for Engineering and Society paperwork.

- In the 3rd year students may opt to transfer to a 3-year BA in Materials Science.

- The Part II of the Final Examination is a 36-week research project, taken within the University, in industry or overseas and written up as a thesis. Marks in Part II are awarded for the standard of the project based on the evidence of a thesis and discussions in a *viva voce* examination. It contributes the equivalent of 4 papers to the overall degree classification. A minimum overall Part I mark of 50% is required to enter the Part II programme.

Both the Part I and Part II Examinations contribute towards the final degree classification.
During the course, formative assessments are carried out within the college and departmental contexts through tutorials, classes and termly examinations (collections). These enable regular feedback and comment on the individual student’s needs thus identifying any possible problem areas as well as highlighting areas of strength. Feedback on practical notebook entries is provided via mark sheets soon after each practical is completed; further feedback is provided by way of a written commentary on the scientific reports the students submit for 3 of the 8 practicals, thus providing both formative and summative assessment.
Appendix E University Rules for Computer Use

Regulations Relating to the use of Information Technology Facilities

Statutes and Regulations
ICTC Regulations 1 of 2002

Made by the ICTC on 6 June 2002
Approved by Council on 24 July 2002

1. In these regulations, unless the context requires otherwise, ‘college’ means any college, society, or Permanent Private Hall or any other institution designated by Council by regulation as being permitted to present candidates for matriculation.

2. University IT and network facilities are provided for use in accordance with the following policy set by Council:

 (1) The University provides computer facilities and access to its computer networks only for purposes directly connected with the work of the University and the colleges and with the normal academic activities of their members.

 (2) Individuals have no right to use university facilities for any other purpose.

 (3) The University reserves the right to exercise control over all activities employing its computer facilities, including examining the content of users' data, such as e-mail, where that is necessary:

 (a) for the proper regulation of the University's facilities;

 (b) in connection with properly authorised investigations in relation to breaches or alleged breaches of provisions in the University's statutes and regulations, including these regulations; or

 (c) to meet legal requirements or otherwise in the context of legal proceedings or the taking of legal advice, in accordance with such procedures as may be approved by Council for this purpose.
(4) Such action will be undertaken only in accordance with these regulations.

3. These regulations govern all use of university IT and network facilities, whether accessed by university property or otherwise.

4. Use is subject at all times to such monitoring as may be necessary for the proper management of the network, or as may be specifically authorised in accordance with these regulations.

5. (1) Individuals may make use of university facilities only with proper authorisation.

(2) 'Proper authorisation' in this context means prior authorisation by the appropriate officer, who shall be the Chief Information Officer or his or her nominated deputy in the case of services under the supervision of IT Services, or the nominated college or departmental officer in the case of services provided by a college or department.

(3) Any authorisation is subject to compliance with the University's statutes and regulations, including these regulations, and will be considered to be terminated by any breach or attempted breach of these regulations.

6. (1) Authorisation will be specific to an individual.

(2) Any password, authorisation code, etc. given to a user will be for his or her use only, and must be kept secure and not disclosed to or used by any other individual. Exceptions may be made for accounts set up specifically to carry out business functions of the University or a unit within it, but authorisation must be given by the head of the unit.

7. Users are not permitted to use university IT or network facilities for any of the following:

(1) any unlawful activity;

(2) the creation, transmission, storage, downloading, or display of any offensive, obscene, indecent, or menacing images, data, or other material, or any data capable of being resolved into such images or material, except in the case of the use of the facilities for properly supervised research purposes when that use is lawful and when the user has obtained prior written authority for the particular activity from the head of his or her department or the chair of his or her faculty board (or, if the user is the head of a department or the chair of a faculty board, from the head of his or her division);
(3) with the intention of drawing people into terrorism (contrary to the University’s statutory duty under Prevent);

(4) the creation, transmission, or display of material which is designed or likely to harass another individual in breach of the University’s Code of Practice on Harassment;

(5) the creation or transmission of defamatory material about any individual or organisation;

(6) the sending of any e-mail that does not correctly identify the sender of that e-mail or any message appearing to originate from another individual, or otherwise attempting to impersonate another individual;

(7) the sending of any message that attempts to disguise the identity of the computer from which it was sent;

(8) the transmission, without proper authorisation, of e-mail to a large number of recipients, unless those recipients have indicated an interest in receiving such e-mail, or the sending or forwarding of e-mail which is intended to encourage the propagation of copies of itself;

(9) the creation or transmission of or access to material in such a way as to infringe a copyright, moral right, trade mark, or other intellectual property right;

(10) private profit, except to the extent authorised under the user's conditions of employment or other agreement with the University or a college; or commercial purposes (including advertising commercial services) without specific authorisation;

(11) gaining or attempting to gain unauthorised access to any facility or service within or outside the University, or making any attempt to disrupt or impair such a service;

(12) the deliberate or reckless undertaking of activities such as may result in any of the following:

 (a) the waste of staff effort or network resources, including time on any system accessible via the university network;

 (b) the corruption or disruption of other users’ data;

 (c) the unauthorised access, transmission or negligent loss of data;

 (d) the violation of the privacy of other users;
(e) the disruption of the work of other users;

(f) the introduction or transmission of a virus or other malicious software into the network;

(13) activities not directly connected with employment, study, or research in the University or the colleges (excluding reasonable and limited use for social and recreational purposes where not in breach of these regulations or otherwise forbidden) without proper authorisation.

8. Software and computer-readable datasets made available on the university network may be used only subject to the relevant licensing conditions.

9. Users shall treat as confidential any information which may become available to them through the use of such facilities and which is not clearly intended for unrestricted dissemination; such information shall not be copied, modified, disseminated, or used either in whole or in part without the permission of the person or body entitled to give it.

10. (1) No user may use IT facilities to hold or process data relating to a living individual save in accordance with the provisions of current data protection legislation (which in most cases will require the prior consent of the individual or individuals whose data are to be processed).

(2) Any individual wishing to use IT facilities for such processing is required to inform the University Data Protection Officer in advance and to comply with any guidance given concerning the manner in which the processing may be carried out.

11. Any individual responsible for the administration of any university or college computer or network system, or otherwise having access to data on such a system, shall comply with the provisions of the Information Security Policy and Data Protection Policy.

12. Users shall at all times endeavour to comply with policies and guidance issued from time to time by IT Services to assist with the management and efficient use of the University’s IT facilities.

13. Connection of any computer, whether college, departmental, or privately owned, to the university network is subject to the following additional conditions:

(1) (a) Computers connected to the university network may use only network
identifiers which follow the University's naming convention, and are registered with IT Services.

(b) The University's Trade Mark and Domain Name Policy specifies, *inter alia*, that all university activities (other than those within OUP's remit) should be presented within the ox.ac.uk domain. Any exception to this requires authorisation as defined in that Policy.

(2) (a) Owners and administrators of computers connected to the university network are responsible for ensuring their security against unauthorised access, participation in 'denial of service' attacks, etc. In particular they are responsible for ensuring that anti-virus software is installed and regularly updated, and that rules and guidelines on security and anti-virus policy, as issued from time to time by IT Services, are followed.

(b) The University may temporarily bar access to any computer or sub-network that appears to pose a danger to the security or integrity of any system or network, either within or outside Oxford, or which, through a security breach, may bring disrepute to the University.

(3) (a) Providers of any service must take all reasonable steps to ensure that that service does not cause an excessive amount of traffic on the University's internal network or its external network links.

(b) The University may bar access at any time to computers which appear to cause unreasonable consumption of network resources.

(4) (a) Hosting Web pages or other network-accessible media on computers connected to the university network is permitted subject to the knowledge and consent of the department or college responsible for the local resources, but providers of any such Web pages or other media must endeavour to comply with guidelines published by IT Services or other relevant authorities.

(b) It is not permitted to offer commercial services through systems connected to the university network, or to provide other IT facilities for any commercial organisation, except with the permission of the Chief Information Officer (IT Services); this permission may require the payment of a licence fee.

(5) Use of file-sharing technology and participation in distributed file-sharing networks may be subject to additional regulation and restriction in order to prevent excessive use of university network resources, or the use of those resources for purposes unconnected
with the University. If a user has any reason to suppose that an application employs peer-to-peer (p2p) or other file-sharing technology, they should seek the advice of the IT officer responsible for the college or departmental network on which they propose to use the software.

(6) (a) No computer connected to the university network may be used to give any individual who is not a member or employee of the University or its colleges access to any network services outside the department or college where that computer is situated.

(b) Certain exceptions may be made, for example, for members of other UK universities, official visitors to a department or college, or those paying a licence fee.

(c) Areas of doubt should be discussed with the Chief Information Officer.

(7) Providing external access to University network resources for use as part of any shared activity or project is permitted only if authorised by the IT Committee (ITC), and will be subject to any conditions that it may specify.

(8) If any computer connected to the network or a sub-network does not comply with the requirements of this section, it may be disconnected immediately by the Network Administrator or any other member of staff duly authorised by the head of the college, section or department concerned.

14. (1) If a user is thought to be in breach of any of the University's statutes or regulations, including these regulations, he or she shall be reported to the appropriate officer who may recommend to the appropriate university or college authority that proceedings be instituted under either or both of university and college disciplinary procedures.

(2) Access to facilities may be withdrawn under section 48 or 49 of Statute XI pending a determination, or may be made subject to such conditions as the Proctors or the Registrar or other decision maker (as the case may be) shall think proper in the circumstances.

Examing Users' Data

15. All staff of an IT facility who are given privileged access to information available through that facility must respect the privacy and security of any information, not clearly intended for
unrestricted dissemination, that becomes known to them by any means, deliberate or accidental.

16. (1) System Administrators (i.e. those responsible for the management, operation, or maintenance of computer systems) have the right to access users' files and examine network traffic, but only if necessary in pursuit of their role as System Administrators.

(2) They must endeavour to avoid specifically examining the contents of users' files without proper authorisation.

17. (1) If it is necessary for a System Administrator to inspect the contents of a user's files, the procedure set out in paragraphs (2)-(5) below must be followed.

(2) Normally, the user's permission should be sought.

(3) Should such access be necessary without seeking the user's permission, it should, wherever possible, be approved by an appropriate authority prior to inspection.

(4) If it has not been possible to obtain prior permission, any access should be reported to the user or to an appropriate authority as soon as possible.

(5) For the purposes of these regulations 'appropriate authority' is defined as follows:

(a) in the case of any university-owned system, whether central or departmental: if the files belong to a student member, the Proctors; if the files belong to any member of the University other than a student member, the Registrar or his or her nominee; or, if the files belong to an employee who is not a member of the University, or a visitor to the University, the head of the department, college, or other unit to which the employee or visitor is responsible, or the head's delegated representative;

(b) in the case of a departmental system, either those named in (a) above, or, in all circumstances, the head of department or his or her delegated representative;

(c) in the case of a college system, the head of the college or his or her delegated representative.
Appendix F Examination Conventions 2018/19
Preliminary Examination in Materials Science

1. INTRODUCTION

Examination conventions are the formal record of the specific assessment standards for the course or courses to which they apply. They set out how examined work will be marked and how the resulting marks will be used to arrive at a final result progression decision and/or classification of an award.

These conventions apply to the Preliminary Examination in Materials Science for the academic year 2018-19. The Department of Materials’ Academic Committee (DMAC) is responsible for approving the Conventions and considers these annually, in consultation with the examiners. The formal procedures determining the conduct of examinations are established and enforced by the University Proctors. These Conventions are a guide to the examiners and candidates but the regulations set out in the Examination Regulations have precedence. The Examination Regulations may be found at: http://www.admin.ox.ac.uk/examregs/.

The paragraphs below indicate the conventions to which the examiners usually adhere, subject to the guidance of other bodies such as the Academic Committee in the Department, the Mathematical, Physical and Life Sciences Division, the Education Committee of the University and the Proctors who may offer advice or make recommendations to examiners.

The examiners are nominated by the Nominating Committee* in the Department and those nominations are submitted for approval by the Vice-Chancellor and the Proctors. In Prelims the examiners are called “moderators”. Formally, moderators act on behalf of the University and in this role are independent of the Department, the colleges and of those who teach the MS M.Eng. programme.

2. RUBRICS AND STRUCTURE FOR INDIVIDUAL PAPERS

Each of the five papers in Prelims, comprising the three Materials Science papers (MS1, MS2 & MS3), the Maths for Materials Science paper, and the Coursework Paper, are weighted equally towards the overall total for the Preliminary Examination. The moderators set the papers, but are advised to consult the course lecturers. The course lecturers are required to provide draft questions and exemplar answers if so requested by the moderators. There are no external examiners for Prelims. The assessed work for the practicals, the crystallography classes and the project work for Computing in Materials Science (CMS) together constitute the Coursework Paper.

* for the 2018-19 examinations the Nominating Committee comprised Prof Grant, Prof Marrow & Dr Taylor.
Written Paper Format

The Materials Science papers 1 - 3 comprise eight questions from which candidates must attempt five. Each question is worth 20 marks. The maximum marks available for each of these papers are 100.

The Prelims paper on Maths for Materials Science consists of two sections, candidates are required to answer all questions in Part A and 4 from Part B. The total marks available for this paper are 180; the mark achieved then being weighted by a factor of 0.555 such that the paper contributes a maximum of 100 marks to the Preliminary Examination.

Coursework paper

The Coursework Paper comprises three elements of coursework: a set of seven reports of practical work as specified in the MS Prelims Handbook (normally each individual report within the set has been marked already as the laboratory course progresses); a set of reports for crystallography (completed under the class schedule); and project work for Computing in Materials Science.

For formal submission of the practical coursework, the Examination Regulations stipulate that candidates are required to submit the Materials Practical Class reports to the Chair of Moderators by no later than 10 am on Friday of the sixth week of Trinity full Term. Further information on this is provided in the Materials Prelims Handbook.

The only types of calculators that may be used in examinations are from the following series:

- CASIO fx-83
- CASIO fx-85
- SHARP EL-531

Candidates are not permitted calculators in the Mathematics for Materials examination. SMP tables are provided in all Preliminary examinations.

3. MARKING CONVENTIONS

3.1 University scale for standardised expression of agreed final marks

Agreed final marks for individual papers will be expressed using the following scale: 0-100

3.2 Qualitative criteria for different types of assessment

Qualitative descriptors, based on those used across the Mathematical, Physical and Life Sciences Division, are detailed below:
<table>
<thead>
<tr>
<th>Mark</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-100</td>
<td>The candidate shows excellent problem-solving skills and excellent knowledge of the material over a wide range of topics, and is able to use that knowledge innovatively and/or in unfamiliar contexts. The higher the mark in this band the greater will be the extent to which these criteria are fulfilled; for marks in the 90-100 range there will be no more than a very small fraction, circa 5-10%, of the piece of work being examined that does not fully meet all of the criteria that are applicable to the type of work under consideration. The 'piece of work' might be, for example, an individual practical report, a question on a written paper, or a whole written paper.</td>
</tr>
<tr>
<td>60-69</td>
<td>The candidate shows good or very good problem-solving skills, and good or very good knowledge of much of the material over a wide range of topics.</td>
</tr>
<tr>
<td>50-59</td>
<td>The candidate shows basic problem-solving skills and adequate knowledge of most of the material.</td>
</tr>
<tr>
<td>40-49</td>
<td>The candidate shows reasonable understanding of at least part of the basic material and some problem solving skills. Although there may be a few good answers, the majority of answers will contain errors in calculations and/or show incomplete understanding of the topics.</td>
</tr>
<tr>
<td>30-39</td>
<td>The candidate shows some limited grasp of basic material over a restricted range of topics, but with large gaps in understanding. There need not be any good quality answers, but there will be indications of some competence.</td>
</tr>
<tr>
<td>0-29</td>
<td>The candidate shows inadequate grasp of the basic material. The work is likely to show major misunderstanding and confusion, and/or inaccurate calculations; the answers to most of the questions attempted are likely to be fragmentary.</td>
</tr>
</tbody>
</table>

3.3 Verification and reconciliation of marks

During the marking process the scripts of all written papers remain anonymous to the markers. Each written paper is marked by a single moderator. Those papers identified by the moderator as having marks close to the boundaries of pass/fail and distinction/pass will be fully marked by a second moderator, who has sight of the first moderator’s marks, but arrives at a formal independent mark.

If the difference in these marks is small (~10% of the total available for the question, 2-3 marks for most questions), the two marks are averaged, with no rounding applied. Otherwise the moderators identify the discrepancy and read the answer again, either in whole or in part, to reconcile the differences.
If after this process the moderators still cannot agree, they seek the help of the Chair, or another moderator as appropriate, to adjudicate. For all other papers, the second moderator checks that the overall mark for each question is consistent with one of three sets of descriptor(s), namely those for <40, 40 to 69, or ≥ 70 as appropriate. An integer total mark for each paper is awarded, where necessary rounding up to achieve this.

First year practicals are assessed on a continual basis by the senior demonstrators. The work for the six crystallography classes is assessed by the Crystallography Class Organiser(s), the first of these classes being assessed formatively only. The project work for the Computing in Materials Science is assessed by the CMS senior demonstrator. Satisfactory performance in the practical work, in the crystallography classes, and in the CMS project work is defined in the MS Prelims Handbook. The Practical Class Organiser reviews the marks for the practicals before they are considered by the moderators, drawing to their attention (i) any anomalously low or high average marks for particular practicals and (ii) any factors that impacted on the practical course, such as breakdown of a critical piece of equipment. The moderators review the practical, crystallography and project marks.

3.4 Scaling

Adjustment to marks, known as scaling, normally is not necessary for prelims.

3.5 Short-weight convention and departure from rubric

The rubric on each paper indicates a prescribed number of answers required (e.g. "candidates are required to submit answers to no more than five questions"). Candidates will be asked to indicate on their cover sheet which questions, up to the prescribed number, they are submitting for marking. Excepting section A of the Maths paper, for which all questions are compulsory, if the cover slip is not completed then the examiners will mark the questions in numerical order by question number. If the candidate lists more than the prescribed number of questions then questions will be marked in the order listed until the prescribed number has been reached. The examiners will NOT mark questions in excess of the prescribed number. If fewer questions than the prescribed number are attempted, (i) each missing attempt will be assigned a mark of zero, (ii) for those questions that are attempted no marks beyond the maximum per question indicated under section 2 above will be awarded and (iii) the mark for the paper will still be calculated out of 100 for MS1, MS2 & MS3 and out of 180 for the Maths for Materials Science paper.

3.6 Late- or non-submission of elements of coursework

Including action to be taken if submission has been or will be affected by illness or other urgent cause, and circumstances in which academic penalties may be applied.

The Examination Regulations prescribe specific dates and times for submission of the required elements of coursework to the Examiners (1. A set of five reports of crystallography coursework as specified in the Course Handbook (normally each individual report within the set has been marked
already as the crystallography classes progress - penalties for late submission of an individual crystallography report are prescribed in the Course Handbook and are applied prior to any additional penalties incurred under the provision of the present Conventions.); 2. A set of seven reports of practical work as specified in the Course Handbook (normally each individual report within the set has been marked already as the laboratory course progresses - penalties for late submission of an individual practical report are prescribed in the Course Handbook and are applied prior to any additional penalties incurred under the provision of the present Conventions); 3. Project work for the Computing in Materials Science as specified in the Course Handbook.) Rules governing late submission of these elements of coursework and any consequent penalties are set out in the ‘Late submission and non-submission of a thesis or other written exercise’ clause of the ‘Regulations for the Conduct of University Examinations’ section of the Examination Regulations (Part 14, ‘Late Submission, Non-submission, Non-appearance and Withdrawal from Examinations’ in the 2018/19 Regulations). A candidate who fails to submit an element of coursework by a prescribed date and time will be notified of this by means of an email sent on behalf of the Chair of Moderators.

Under the provisions permitted by the regulation, late submission of an element of coursework, as defined above, for Materials Science examinations will normally result in one of the following:

(a) Under paras 14.4 to 14.9. In a case where illness or other urgent cause has prevented or will prevent a candidate from submitting an element of coursework at the prescribed date, time and place the candidate may, through their college, request the Proctors to accept an application to this effect. In such circumstances the candidate is strongly advised to (i) carefully read paras 14.4 to 14.9 of the aforesaid Part 14, where the mandatory contents of such an application to the Proctors are outlined and the several possible actions open to the Proctors are set out, and (ii) both seek the guidance of their college Senior Tutor and inform at least one of their college Materials Tutorial Fellows. Some, but not all, of the actions open to the Proctors may result in the work being assessed as though it had been submitted on time (and hence with no late submission penalty applied).

(b) Under para 14.10. In the case of submission on the prescribed day for the submission but after the prescribed time on that day for the submission and without prior permission from the Proctors: a penalty of a reduction in the mark for the coursework in question of up to 10% of the maximum mark available for the piece of work, taking into account any circumstances communicated to the moderators by the Proctors should they approve a request by the candidate, submitted to the Proctors via the Senior Tutor of their college within five working days of notification of non-submission, that the moderators take into account the circumstances of the late submission.

(c) Under para 14.11. In the case of submission after the prescribed date for the submission and within 14 calendar days of notification of non-submission and without prior permission
from the Proctors: subject to leave from the Proctors to impose an academic penalty, for the first day or part of the first day that the work is late a penalty of a reduction in the mark for the coursework in question of up to 10% of the maximum mark available for the piece of work and for each subsequent day or part of a day that the work is late a further penalty of up to 5% of the maximum mark available for the piece of work; the exact penalty to be set by the Moderators with due consideration given to the circumstances as advised by the Proctors. The reduction may not take the mark below 40%.

(d) Under Para 14.12. In the case of failure to submit within 14 calendar days of the notification of non-submission and without prior permission from the Proctors: a mark of zero shall be recorded for the element of coursework and normally the candidate will have failed the Preliminary Examination as a whole, as stated in the Special Regulations for the Preliminary Examination in Materials Science.

Where an element of coursework is not submitted or is proffered more than 14 days after notification of non-submission the Proctors may, exceptionally, under their general authority, and after (i) making due enquiries into the circumstances and (ii) consultation with the Chairman of the Moderators, permit the candidate to remain in the examination. In this case for the element of coursework in question (i) the Moderators will award a mark of zero and (ii) dispensation will be granted from the Regulation that requires a minimum mark of 40% if the candidate is not to fail the examination as a whole.

Elements of coursework comprising more than one individual piece of assessed coursework

Penalties for late submission of individual practical reports and individual crystallography class reports are set out in the 2018/19 MS Prelims Handbook and are separate to the provisions described above.

The consequences of failure to submit individual practical reports or individual crystallography reports are set out in the MS Prelims Handbook (sections 9.6 and 10 of the 2018/19 version) and are separate to the provisions described above. In short, normally this will be deemed to be a failure to complete satisfactorily the relevant element of Materials Coursework and will therefore constitute failure of the Preliminary Examination as a whole, as stated in the Special Regulations for the Preliminary Examination in Materials Science.

Where an individual practical report or individual crystallography report is not submitted or is proffered so late that it would be impractical to accept it for assessment the Proctors may, exceptionally, under their general authority, and after (i) making due enquiries into the circumstances and (ii) consultation with the Chairman of the Moderators, permit the candidate to remain in the examination. In this case for the individual piece of coursework in question (i) the Moderators will award a mark of zero and (ii) dispensation will be granted from the Regulation that
requires submission/delivery of every individual piece of assessed coursework if the candidate is not to fail the examination as a whole.

3.7 Penalties for over-length work and departure from approved titles or subject-matter

This is not applicable to the Prelims examination.

3.8 Penalties for poor academic practice

Substantial guidance is available to candidates on what constitutes plagiarism and how to avoid committing plagiarism (see Appendix B of the Materials Prelims Handbook and https://www.ox.ac.uk/students/academic/guidance/skills/plagiarism)

If plagiarism is suspected, the evidence will be considered by the Chair of the Moderators (or a deputy). He or she will make one of three decisions (http://www.admin.ox.ac.uk/media/global/wwwadminoxacuk/localsites/educationcommittee/documents/policyguidance/Plagiarism_procedures_guidance.pdf):

(a) No evidence, or insufficient evidence, of plagiarism – no case to answer.

(b) Evidence suggestive of more than a limited amount of low-level plagiarism – referred to the Proctors for investigation and possible disciplinary action.

(c) Evidence proving beyond reasonable doubt that a limited amount of low-level plagiarism has taken place – in this case the Board of Moderators will consider the case and if they endorse the Chair’s judgement that a limited amount of low-level plagiarism has taken place will select one of two actions:

(i) Impose a penalty of 10% of the maximum mark available for the piece of work in question. For a student who remains on course in addition there will be a requirement to demonstrate to their college Materials Tutorial Fellow that in the period between the present offence and the next submission of work for summative assessment they have followed to completion the University’s on-line course on plagiarism (https://www.ox.ac.uk/students/academic/guidance/skills/plagiarism).

(ii) No penalty, but a warning letter to be issued to the candidate explaining the offence, indicating that on this occasion it has been treated as a formative learning experience, and that the present incident will be taken into account should there be a further incidence of plagiarism. For a student who remains on course in addition there will be a requirement to demonstrate to their college Materials Tutorial Fellow that in the period between the present offence and the next submission of work for summative assessment they have followed to completion the University’s on-line course on plagiarism (https://www.ox.ac.uk/students/academic/guidance/skills/plagiarism).
4. PROGRESSION RULES AND CLASSIFICATION CONVENTIONS

4.1 Qualitative descriptors

Qualitative descriptors, based on those used across the Mathematical, Physical and Life Sciences Division, are given below:

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-100</td>
<td>The candidate shows excellent problem-solving skills and excellent knowledge of the material over a wide range of topics, and is able to use that knowledge innovatively and/or in unfamiliar contexts.</td>
</tr>
<tr>
<td>60-69</td>
<td>The candidate shows good or very good problem-solving skills, and good or very good knowledge of much of the material over a wide range of topics.</td>
</tr>
<tr>
<td>50-59</td>
<td>The candidate shows basic problem-solving skills and adequate knowledge of most of the material.</td>
</tr>
<tr>
<td>40-49</td>
<td>The candidate shows reasonable understanding of at least part of the basic material and some problem solving skills. Although there may be a few good answers, the majority of answers will contain errors in calculations and/or show incomplete understanding of the topics.</td>
</tr>
<tr>
<td>30-39</td>
<td>The candidate shows some limited grasp of basic material over a restricted range of topics, but with large gaps in understanding. There need not be any good quality answers, but there will be indications of some competence.</td>
</tr>
<tr>
<td>0-29</td>
<td>The candidate shows inadequate grasp of the basic material. The work is likely to show major misunderstanding and confusion, and/or inaccurate calculations; the answers to most of the questions attempted are likely to be fragmentary</td>
</tr>
</tbody>
</table>

4.2 Final outcome rules (Distinction, Pass, Fail)

The pass/fail border is at 40%.

The Moderators may award a distinction to recognise especially strong overall performance. Normally (i) at their discretion, the moderators may specify a mark in the range 70% to 79% such that candidates with an overall mark greater than or equal to this specified mark are awarded a distinction and (ii) a distinction will be awarded to all candidates with an overall mark of 80% or greater.

4.3 Progression rules
To pass the examination and progress to Part I, candidates are required to satisfy the moderators in all five papers, either at a single examination or at two examinations in accordance with the re-sit arrangements detailed below.

Failure in one or two written papers may be compensated by better performance in other written papers provided the candidate obtains at least 35% on the failed paper. Failure of three papers precludes compensation. Where compensation is permitted, only those marks in excess of 40 on a passed paper may be used towards compensation and normally this shall be at a rate of 3 marks to every deficit mark to be compensated.

For example, if two written papers are passed and marks of 36% and 38% are obtained in the remaining two written papers then the total for the four written papers must be at least 172 marks \((36 + 38 + 2 \times 40 + 3 \times (4+2))\) for both failures to be compensated.

The Moderators have the authority to use their discretion and consider each case on its merit.

Failure of the coursework paper will normally constitute failure of the Preliminary Examination. Materials coursework cannot normally be retaken. Exceptionally a candidate who has failed the coursework may be permitted jointly by the Moderators and the candidate’s college to retake the entire academic year.

5. RESITS

Candidates who pass the coursework paper and fail one or two written papers will be asked to resit only those written papers.

Candidates who pass the coursework paper and fail more than two written papers will be asked to resit all four written papers.

The resits usually take place in September. To pass a resit paper the candidate must obtain at least 40%, and normally no compensation is allowed. There is only one opportunity to resit the examination, and failure to pass a resit examination normally results in the candidate being prohibited from progressing to Part I. Exceptionally, a college may allow a student to suspend studies for a year and take Prelims a second time the following June.

The Moderators have the authority to use their discretion and consider each case on its merit. In such cases they will take into account a candidate’s profile across all elements of assessment together with, subject to guidance from the Proctors where appropriate, any other factors they deem to be relevant.

6. MITIGATING CIRCUMSTANCES NOTICES TO EXAMINERS (MCE)

[For late- or non-submission of elements of coursework, including cases due to illness or other urgent cause, see section 3.6 of the present Conventions.]
Where a candidate or candidates have made a submission, under Part 13 of the Regulations for Conduct of University Examinations, that unforeseen factors may have had an impact on their performance in an examination, the moderators will meet to discuss the individual notice and band the seriousness of each notice on a scale of 1-3 with 1 indicating minor impact, 2 indicating moderate impact, and 3 indicating very serious impact.

Normally, this MCE meeting comprises two parts: Part A and Part B. Part A will take place before the meeting of the moderators at which the examination results are reviewed. When reaching these decisions on MCE impact level, the moderators will take into consideration the severity and relevance of the circumstances, and the strength of the evidence. Moderators will also note whether all or a subset of written papers and/or elements of coursework were affected, being aware that it is possible for circumstances to have different levels of impact on different written papers and elements of coursework. The banding information is used at Part B of the MCE meeting: in Part B a candidate’s results are discussed in the light of the impact of each MCE and recommendations formulated regarding any action(s) to be taken in respect of each MCE.

Further information on the procedure is provided in the Policy and Guidance for examiners, Annex C and information for students is provided at www.ox.ac.uk/students/academic/exams/guidance. It is very important that a candidate’s MCE submission is adequately evidenced and, where appropriate, verified by their college; the University forbids the Board of Moderators from seeking any additional information or evidence.

7. DETAILS OF EXAMINERS AND RULES ON COMMUNICATING WITH EXAMINERS

The Moderators in Trinity 2018 are: Prof. Feliciano Giustino, Prof. Judy Kim, Prof Michael Moody (Chair) and Prof. Kyriakos Porfyrikis. It must be stressed that to preserve the independence of the Moderators, candidates are not allowed to make contact directly about matters relating to the content or marking of papers. Any communication must be via your college, who will, if the matter is deemed of importance, contact the Proctors. The Proctors in turn communicate with the Chairman of Prelims.
ANNEX

Summary of maximum marks available to be awarded for different components of the MS Preliminary Examination in 2019:

<table>
<thead>
<tr>
<th>Component</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Science 1: Structure of Materials</td>
<td>100</td>
</tr>
<tr>
<td>Materials Science 2: Properties of Materials</td>
<td>100</td>
</tr>
<tr>
<td>Materials Science 3: Transforming Materials</td>
<td>100</td>
</tr>
<tr>
<td>Mathematics for Materials Science</td>
<td>100</td>
</tr>
<tr>
<td>Coursework Paper:</td>
<td></td>
</tr>
<tr>
<td>Crystallography Classes</td>
<td>25</td>
</tr>
<tr>
<td>Practicals</td>
<td>50</td>
</tr>
<tr>
<td>Computing in Materials Science</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
</tr>
</tbody>
</table>
Appendix G University Policy on Intellectual Property Rights

Intellectual property (IP) is intangible property that is the result of creativity and innovation and which can be owned in a similar way to physical property. Examples of intellectual property rights (IPRs) include copyright, patents, and trademarks. In the University context, IP can be viewed as the results and outcomes of research. As with other property, there may be commercial value in IP, which may be realised via various routes including licensing or selling intellectual property rights. Oxford University Innovation, the University’s technology transfer company, are responsible for assisting Oxford University researchers to protect and commercialise their IP. Oxford was one of the first UK universities to develop an intellectual property policy to govern the ownership and exploitation of IP generated by students and employees in the course of their employment or studies.

Oxford’s IP policy is governed by the University’s Statutes and Regulations. For ease of reference, an extract from the Statutes and Regulations is contained below. The Statutes and Regulations, as they relate to the University’s IP policy, together with regulations for the administration of the IP policy, may be found in full on the University website (researchsupport.admin.ox.ac.uk/innovation/ip).

Essential ingredients of the University’s approach are a generous revenue-sharing policy, which brings significant personal benefits to researchers (employees or students), and a hugely successful and well-resourced technology transfer operation, Oxford University Innovation, which has earned national and international recognition. Since 1997 has been responsible for creating spinout companies based on academic research generated within and owned by the University of Oxford, and has spun out a new company every two months on average and files, again on average, one new patent a week. Oxford University Innovation works closely with Research Services, a part of the University’s central administration. Research Services’ remit includes the management of research grants and contracts to the University, and the assignment of University intellectual property to Oxford University Innovation for exploitation.

University intellectual property policy
(Extract from Statute XVI – Part B)

5. (1) The University claims ownership of all intellectual property specified in section 6 of this statute which is devised, made, or created:

 (a) by persons employed by the University in the course of their employment;
(b) by student members in the course of or incidentally to their studies;

(c) by other persons engaged in study or research in the University who, as a condition of their being granted access to the University's premises or facilities, have agreed in writing that this Part shall apply to them; and

(d) by persons engaged by the University under contracts for services during the course of or incidentally to that engagement.

(2) The University's rights under sub-section (1) above in relation to any particular piece of intellectual property may be waived or modified by agreement in writing with the person concerned.

6. The intellectual property of which ownership is claimed under section 5 (1) of this statute comprises:

(1) works generated by computer hardware or software owned or operated by the University;

(2) works created with the aid of university facilities including (by way of example only) films, videos, photographs, multimedia works, typographical arrangements, and field and laboratory notebooks;

(3) patentable and non-patentable inventions;

(4) registered and unregistered designs, plant varieties, and topographies;

(5) university-commissioned works not within (1), (2), (3), or (4);

(6) databases, computer software, firmware, courseware, and related material not within (1), (2), (3), (4), or (5), but only if they may reasonably be considered to possess commercial potential; and

(7) know-how and information associated with the above.

7. The University will not assert any claim to the ownership of copyright in:

(1) artistic works not listed in subsection (2) of section 6 of this statute, books, articles, plays, lyrics, scores, or lectures, apart from those specifically commissioned by the University;

(2) audio or visual aids to the giving of lectures;
(3) student theses, exercises and answers to tests and examinations save to the extent that they contain intellectual property claimed by the University under subsection (6) of section 6 of this statute; or

(4) computer-related works other than those specified in section 6 of this statute.

8. For the purpose of sections 6 and 7 of this statute, 'commissioned works' are works which the University has specifically employed or requested the person concerned to produce, whether in return for special payment or not, but save as may be separately agreed between the University Press and the person concerned, works commissioned by The University Press in the course of its publishing business shall not be regarded as 'works commissioned by the University.'

9. Council may make regulations:

(1) defining the classes of persons or naming individuals to whom section 5 (1) (c) of this statute shall apply;

(2) requiring student members and such other persons as may be specified in regulations to sign any documents necessary in order to give effect to the claim made by the University in this Part and to waive any rights in respect of the subject-matter of the claim which may be conferred on them by Chapter IV of Part 1 of the Copyright, Designs and Patents Act 1988; and

(3) generally for the purposes of this Part.

10. This Part shall apply to all intellectual property devised, made, or created on or after 1 October 2000 and is subject to the provisions of the Patents Act 1977.
Appendix H Year 1 Foreign Language Study

To: Director of Studies

From:

College:

I wish to study a Language Option this year:

<table>
<thead>
<tr>
<th>Language</th>
<th>Course Type (e.g. General / Fast Track) and Level (1-7)</th>
<th>Online Test score (if applicable)</th>
<th>GCSE Grade</th>
<th>AS/A Level Grade</th>
<th>Other qualification</th>
</tr>
</thead>
</table>

☐ I have enrolled in and paid for the above course and intend to claim for reimbursement of 50% of the costs from the Department.

☐ I understand that reimbursement is dependent upon meeting an 80% attendance level and submitting proof of payment together with a copy of the Certificate of Achievement that is awarded upon successful completion*.

Signature of student: .. Date:

☐ I can confirm that the College is agreeable to the above

Countersignature of Tutor: Date:

* Please ensure you retain your receipt as you will need to submit this as proof of payment the Department, together with your Certificate of Achievement.

Your college may also reimburse 50% of the costs, subject to the same documentary evidence – please check with your college office before registering.

This form must be returned to the Academic Administrator by Monday of week 2, Michaelmas Term.
Appendix I Application for 2nd year Foreign Language Option

To: Academic Administrator
From:
College:

I wish to take the Foreign Language Option in my 2nd year, instead of the Entrepreneurship & New Ventures course.

<table>
<thead>
<tr>
<th>Language</th>
<th>Course Type (e.g. General / Fast Track) and Level (1-7)</th>
<th>Online Test score (if applicable)</th>
<th>GCSE Grade</th>
<th>AS/A Level Grade</th>
<th>Other qualification</th>
</tr>
</thead>
</table>

☐ Yes – I studied this language in my first year through a course with the Language Centre. Please state type and level of course: ...

☐ No – I did not take a language course with the Language Centre in my first year

☐ I can confirm that the College is agreeable to the above transfer:

Signature of Tutor: Date:

Signature of student: Date:

This form must be returned to the Deputy Administrator (Academic) by the end of week 8, Trinity Term of the 1st year

Note: it is possible to reconsider this decision over the Long Vacation and withdraw from the Foreign Language Option. If you do so, please contact Philippa Moss (philippa.moss@materials.ox.ac.uk) as soon as you know.
Appendix J Crystallography Class Procedures

Handing in the work
A form to register attendance will be available for you to sign at the beginning of every class.

All scripts will be stamped after collection on the day of the class. Scripts without the stamp will not be marked. Each script is marked out of 10.

Each page you are handing in must give the page number and the total number of pages in the report, i.e. page 3 of 4, as well as your name.

When you hand in your script a tick will be made by your name on the attendance sheet; it is your responsibility to check that this has been done before you leave the class.

Forgetting to hand in the work
Students who attend a class and have signed the attendance sheet but forget to hand their work in will have their scripts marked at a later date provided they were handed in before the other students received their marked copies back, but the mark recorded will be reduced by a factor of 2. If the work is handed in after this deadline a mark of 0 will be recorded, but will count towards the requirement to submit a script for every crystallography class. All scripts must have been submitted by the end of Hilary term.

NB: This is examinable work; it must be handed to us in person rather than left somewhere to be collected.

Missing one or more classes
Missing one class without a good reason could be enough to fail prelims*. If you do miss a class, you should notify your tutor. The Senior Tutor at your college will then decide whether or not to request the Proctors to consider if your absence is justifiable, for example due to illness. Normally if the absence is ruled to be justified the overall average crystallography mark will be calculated based on those classes that you were able to attend.

*Satisfactory Performance in Coursework

To pass the coursework ‘paper’ candidates must normally demonstrate a satisfactory performance in both the Practical Work, the Crystallography Classes and the project work in Computing for Materials Science (CMS).

For their practical coursework to be judged as satisfactory candidates must have achieved at least 40% overall on this practical coursework and have submitted a report for marking on each practical listed in the course handbook.

For their crystallography coursework to be judged as satisfactory candidates must have achieved at least 40% overall on this crystallography coursework, and have submitted a report on each of the crystallography classes.

For their CMS project work to be judged as satisfactory candidates must have achieved at least 40% on this coursework.

As indicated in the Examination Regulations for the Preliminary Examination in Materials Science (clause 2d), coursework cannot normally be retaken and failure of coursework will normally constitute failure of the Preliminary Examination. In exceptional circumstances a student who has failed the coursework might be permitted jointly by the Moderators of the Preliminary Examination and the candidate’s college to repeat all five papers of the Preliminary Examination in a subsequent year.

Table of Contents
Appendix K Electronic Declaration of Authorship for online practical reports

I confirm the following:

1. I have read and understood the University’s disciplinary regulations concerning conduct in examinations and, in particular, the regulations on plagiarism (The University Student Handbook Section 7.8; available at https://www.ox.ac.uk/students/academic/student-handbook).

2. I have read and understood the Education Committee’s information and guidance on academic good practice and plagiarism at https://www.ox.ac.uk/students/academic/guidance/skills.

3. The [thesis/dissertation/extended essay/assignment/project/other submitted work] I am submitting is entirely my own work except where otherwise indicated.

4. It has not been submitted, either partially or in full, either for this Honour School or qualification or for another Honour School or qualification of this University (except where the Special Regulations for the subject permit this), or for a qualification at any other institution.

5. I have clearly indicated the presence of all material I have quoted from other sources, including any diagrams, charts, tables or graphs.

6. I have clearly indicated the presence of all paraphrased material with appropriate references.

7. I have acknowledged appropriately any assistance I have received in addition to that provided by my [tutor/supervisor/adviser].

8. I have not copied from the work of any other candidate.

9. I have not used the services of any agency providing specimen, model or ghostwritten work in the preparation of this thesis/dissertation/extended essay/assignment/project/other submitted work. (See also section 2.4 of Statute XI on University Discipline under which members of the University are prohibited from providing material of this nature for candidates in examinations at this University or elsewhere: http://www.admin.ox.ac.uk/statutes/352-051a.shtml).

10. I agree to retain an electronic copy of this work until the publication of my final examination result, except where submission in hand-written format is permitted.

11. I agree to make any such electronic copy available to the examiners should it be necessary to confirm my word count or to check for plagiarism.
Appendix L Teaching Labs – Lab Notebook marking sheet

Practical:
Student name:
Assessor:
Date:

<table>
<thead>
<tr>
<th>Weight</th>
<th>Score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation and completeness of results</td>
<td>1 mark</td>
<td></td>
</tr>
<tr>
<td>Data analysis and errors</td>
<td>1 mark</td>
<td></td>
</tr>
<tr>
<td>Interpretation of results and conclusions</td>
<td>1 mark</td>
<td></td>
</tr>
</tbody>
</table>

Final mark (out of 3)
Department of Materials - Map of Central Site

1. Reception
2. Hume-Rothery Building
3. Holder Building
4. Engineering Technology Building
5. 12/13 Parks Road
6. 21 Banbury Road
7. Rex Richards Building
8. Information Engineering Building