Future quantum systems will likely use several elements conceived with different strategies. These elements, such as photonic networks or superconducting circuits, typically operate at extremely different frequencies, and making them communicate is fundamental for integrated quantum devices. Even techniques to coherently connect remotely-located superconducting nodes would necessitate optical signals and is yet to be developed. This project will develop a coherent microwave-to-optical interface within hybrid quantum architectures for large scale distributed quantum computing. The platform will allow interfacing devices consisting of superconducting microwave resonators by coupling them to emitting spin centres. The resulting scheme will thus allow converting quantum information between two completely different regimes, GHz and optical, that are of crucial relevance for networking. The work will comprise the fabrication of nanodevices with superconducting and magnetic properties and their characterization at low temperatures. The thesis is strongly multidisciplinary and candidates from materials, chemistry and physics will be welcome. The work is developed in the context of an international collaboration, so different aspects can be privileged depending on the interests and attitude of the candidate. You will join an active and lively laboratory with an international atmosphere, and will be assisted in developing a personal vision and an autonomous scientific profile, as well as possible industrial links and scientific collaborations. Please refer directly to Dr. Lapo Bogani, Dr. Edward Laird, Prof. Jason Smith or Prof. Andrew Briggs for details.