Project Management for Doctoral Students

Paul Warren
Principal Technologist
Pilkington Group Limited
(A member of NSG Group)

7th November 2014
Agenda

- What does NSG do?
- What is a project?
- Why do we need to manage projects?
- Project Management for Industrial work
- Project Management for D. Phil studies
Buildings - outside

Electro-chromic glazing – thin layer of WO3 that changes colour with changing oxidation state of W
Pilkington Activ™ - self-cleaning glass

Key part is ~30nm coating of anatase phase titania on glass, deposited by APCVD
Transport
Power and light generation.....

Glass paper – in batteries

Glass flakes – paint and lipstick
Key part of device is TCO – deposited onto glass. Functional part is then grown on top.

Transparency and conductivity in the same bulk material is unusual - oxides of Sn, In, Zn, Cd. (Thin metal layers, carbon)

We supply fluorine-doped SnO2 – deposited straight onto the hot glass during the float glass production process.
TCO characteristics

Common TCOs
- ITO – ‘best’
- FTO - cheapest
- ZnO - intermediate

\[\sigma = ne\mu \]
\(\sigma \) - conductivity
\(n \) – carrier concentration
\(\mu \) – carrier mobility

Low \(\lambda \) – low T, high A - band-gap.
High \(\lambda \) – low T, high R – n (Transition steepness - \(\mu \))

‘Best’ is defined in terms of a figure of merit – defined in terms of an optical property and an electrical property.
Also – surface morphology, environmental stability, cost....
Some comments....

• Prediction is very difficult, especially about the future.
 (Neils Bohr)

• It's not the plan that is important, it's the planning.
 (Dr Graeme Edwards)

• Planning is an unnatural process; it is much more fun to do something. The nicest thing about not planning is that failure comes as a complete surprise, rather than being preceded by a period of worry and depression. (Sir John Harvey-Jones)

• Trying to predict the future is like trying to drive down a country road at night with no lights while looking out the back window. (Peter Drucker)
What is a project?

- A project is a human activity that achieves a stated objective against a time scale

- Usually....
 - a definable start and end point
 - a clear objective
 - a fixed time scale
 - requires resources
 - a team of people, but one person is responsible
 - little opportunity for practice/rehearsal
 - involves change
When should a project be planned?

- Always - no matter how small or unpredictable
- A successful project will always allow time for planning - at the start and through the project
- Unsuccessful projects leave the planning until things start to go wrong
- Plans need to be appropriate to the size of the project
Key components of a plan

- (i) Why are you doing the work? (ii) Who is the work for?
- (iii) Consideration of Time/Cost/Quality
- (iv) How do you know how well the work is going?
- (v) What if the work doesn’t go to plan?
(i) Why are you doing the work?

- Because it’s a new product you’ll be able to sell
- Because it’s an improvement to your existing processes
- Because it’s an exciting piece of new science
- Because you want your D.Phil degree
(ii) Who are you doing the work for?

- Concept of stakeholders - projects have various ‘interested parties’....
- Sponsor
- Gatekeepers
- Project Manager
- Project Team Members
- Who are your stakeholders? Yourself, your Supervisor, the Department....?
(iii) Time/Cost/Quality

Ideal
- On Time
- Under Budget
- Acceptable Quality

Your project

“Fast, Cheap, and Good…pick two. If it’s fast and cheap it won’t be good. If it’s cheap and good it won’t be fast. If it’s fast and good it won’t be cheap.”

Fast, cheap, and good…pick (2) words to live by.
(iv, v) Milestones/Quality

- How do you know how well the project is going?

- Set ‘Milestones’ - intermediate targets that need to be met before further progress can be made

- How do you know whether a target has been met?

- You need some measurement of ‘Quality’
Pilkington Innovation Process

Stage 0
Idea
Evaluation

Stage 1
Concept
Definition

Stage 2
Evaluate

Stage 3
Develop

Stage 4
Implement

Stage 5
Launch

Idea
Evaluation

Gate 0

Gate 1

Gate 2

Gate 3

Gate 4

Gate 5

Winners
What things does industry consider?

- **Market Analysis**
 - Customer need/benefit, Preliminary product/process description
 - Initial cost benefit analysis (sales/volume, existing product impact etc.)
 - Competitor position/response

- **Technical Analysis**
 - Preliminary product/process specification, Technical feasibility & risk analysis
 - Patent issues, Alternative technologies/options (JV, licensing etc.)
 - HS&E assessment

- **Manufacturing Analysis**
 - Potential manufacturing location(s), Compatibility with existing processes
 - Impact on existing capacity, Logistics (Raw Material -> customer delivery)

- **Financial Analysis**
 - Development Costs, Capital Costs
 - Product/Process costs, Cost of manufacture, Average price/profit/return on sales
Some Project Tools

- Work Breakdown Structures
- Gantt Charts
- Critical Path Analysis (PERT Charts)
- Contingency Planning
- Failure Mode Effects Analysis
- Pareto Charts
Work Breakdown Structure

• Consists of....

One high-level Objective

Some Work Packages

Lots of Tasks
Work Package | Work Package | Work Package

Tasks

Tasks

Tasks

Tasks

Work Breakdown Structure
Gantt Charts

- Similar information to a Work Breakdown Structure
- Crucial difference is the addition of a *timeframe*
- No time-dependencies shown - so direct Critical Path Analysis cannot be computed.
- No direct consideration of Quality
Gantt Charts

<table>
<thead>
<tr>
<th></th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Packages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Package 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Package 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Package 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contingency Planning

• What do you do if your supervisor crashes his glider into a tree and is off for a while?

• What do you do if your samples don’t arrive on time?

• What do you do if the equipment you want to use is not available (either not working or heavily booked) for some time?

• How will you finance yourself if you don’t finish in 3.5 years?
Exercises 1, 2

- Construct (i) a Work Breakdown Structure, and (ii) a Gantt chart, for:

‘Getting a good literature review handed in by 30th September 2015’

- Some points to consider: - Supervisor availability in summer 2015? - Mastery of electronic searching, What information already exists in your research group? etc etc

- One Objective, Some Work Packages, Lots of Tasks
Example - My D.Phil project

- **Objective** - Get my D.Phil qualification

- **Thesis title** - ‘An investigation of the relationship between the electrical and mechanical properties of non-metals’

- **Work Packages** – *generic (for an experimental project)*
 (a) Literature review
 (b) Specimen Preparation/Experimental techniques
 (In my case - X-ray diffraction, cutting, polishing, indentation, dislocation velocity measurement)

 (c) Specific scientific work packages here

 (d) Produce thesis, attend viva
Example - My D.Phil project

• Work Packages - specific scientific
 (1) Indentation of \{001\}, \{111\} faces of GaAs as a function of temperature, using Knoop and Vickers indenters
 (2) Measure dislocation velocities
 (3) Interpretation of dislocation velocity measurements - and hence....
 (4) Interpretation of indentation results
Example - My D.Phil project

- Work Package (2) - Dislocation velocity measurements

Tasks

- (i) Production of dislocation sources in samples - small-scale scratches at high temperature
- (ii) Mechanical loading of samples at high temperatures - design of apparatus
- (iii) Measurement of velocity
Example - My D.Phil project

- **Work Package (3) - Dislocation velocity interpretation**

 Tasks
 - (i) Which types (screw, 60°, a, b) of dislocation loop have I produced?
 - (ii) How will surface-nucleated dislocation loops behave under the stress field that I’ve applied?
 - (iii) Differences in dislocation motion for N-type, intrinsic, P-type GaAs - interpretation in terms of electronic properties,
 - (iv) How do dislocations of different type (and hence velocity) move under/around indenter?
Sample Preparation

- X-ray diffraction
- Crystal cutting
- Crystal polishing
- Crystal etching

Health and Safety

- Internet
- Co-workers
- Library

Literature Review

Experimental Techniques

- Dislocation velocity measurements
- Dislocation production
- Stressing dislocations
- Velocity measurements
- Indentation measurements

Indentation

Tasks

Interpretation

Tasks

Viva

Tasks

Write-up

Obtain Thesis

Work Breakdown Structure
Summary

- Project Management is something you need to do - whether you intend to work in industry or service industries or to remain in academic life.

- The level of Project Management/Planning needs to be appropriate to the tasks.

- There are plenty of tools available to assist you. Work Breakdown Structures and Gantt Charts are probably most appropriate for D. Phil work.

- Use Milestones/Quality measurements to assess progress.

- The Project Plan can be changed!
Gantt Chart

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Package 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP2 Lit Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define scope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attend Info Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalogue articles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft to s'visor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Package 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPx Write Thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outline Contents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>