Personal Homepages

Natalia Ares

Dr Natalia Ares
Maria Skłodowska-Curie Fellow

Department of Materials
University of Oxford
16 Parks Road
Oxford OX1 3PH

Tel: +44 1865 273719 (Room 195.20.09)
Tel: +44 1865 273777 (reception)
Fax: +44 1865 273789 (general fax)

Projects Available

Bench-top experimental tests of gravitation in quantum systems
Dr N. Ares / Dr E. A. Laird / Professor G. A. D. Briggs

The territory where quantum mechanics has to be reconciled with gravitation is still experimentally unexplored. Gravitational effects in quantum systems are typically small, making laboratory-scale experiments extremely challenging. Advances in mechanical resonators at the micro-scale and cryogenic temperatures are beginning to bring such experiments within reach. We plan to evaluate the feasibility of bench-top experiments based on two micromechanical oscillators to explore the effect of gravity in quantum systems. 

Heating of mechanical resonators is expected from gravitational decoherence. To determine whether this heating effect can be measured, we will build the world’s most sensitive calorimeter based on an optomechanical system at cryogenic temperatures. The optomechanical system will consist of two mechanical oscillators inside a 3D microwave cavity, whose interaction will allow for measurement of the mechanical oscillators’ temperature. The microwave cavity will be fabricated in an aluminium block and the mechanical resonators will be commercially available silicon nitride membranes with excellent mechanical properties. 

This is an ambitious project with the goal of elucidating whether quantum gravitational effects can arise in table-top experiments, opening up the possibility for a whole new direction for the quest of quantum gravitational effects. 

Also see homepages: Natalia Ares Andrew Briggs Edward Laird

Putting the mechanics into quantum mechanics: creating superpositions of motion using vibrating carbon nanotubes
Dr E. A. Laird / Dr N. Ares / Professor G. A . D. Briggs

The quantum mechanics of microscopic objects such as atoms and spins is well established. But what about larger objects? Can we verify true quantum behaviour for these?

As a first step to answering this question, we plan to create and measure quantum superpositions of nanoscale mechanical devices. Although tiny by everyday standards, even the smallest fabricated device contains thousands of atoms. We will make use of suspended vibrating carbon nanotubes. These possess many attractive features for creating mechanical quantum superpositions, including low mass, large quantum level spacing, and comparatively large zero-point motion. Our goal is to carry out a foundational test of quantum mechanics – the Leggett-Garg test – that falsifies the hypothesis of classical behaviour in this device. This project will focus on creating and probing so-called “macroscopically distinct” superpositions, such as a superposition of zero and ten phonons in the same device. These challenging experiments on tiny devices are the first step on a long road to discovering whether quantum mechanics applies to macroscopic objects.

Also see homepages: Natalia Ares Andrew Briggs Edward Laird

Also see a full listing of New projects available within the Department of Materials.